An emerging avenue for recalcitrant neurodegenerative disease treatment is neural progenitor cell (NPC) transplantation. In this study, we investigated the effectiveness of two different delivery routes of human-derived NPC inoculation: injection into the common carotid artery or unilateral stereotactic implantation into the degenerating cerebellum and hippocampus of spastic Han-Wistar (sHW) rats, a model of ataxia. At 30 days of age, sHW mutants were implanted with osmotic pumps preloaded with cyclosporine. Ten days after pump implantation, the animals were given either 3,000,000 live human-derived NPCs (hNPCs; n = 12) or 3,000,000 dead NPCs (dNPCs; n = 12) injected into the common carotid artery, or were given two unilateral implantations of 500,000 hNPCs into the cerebellum and 500,000 hNPCs into the hippocampus of each sHW rat (n = 12) or 500,000 dNPCs by unilateral implantation into the cerebellum and hippocampus (n = 12). We also compared treated sHW rats to untreated sHW rats: normal rats (n = 12) and sibling sHW rats (n = 12). Motor activity and animal weights were monitored every 5 days to ascertain effectiveness of the two types of delivery methods compared to the untreated mutant and normal animals. Mutant rats with hNPC implantations, but not dNPC or carotid artery injections, showed significant deceleration of motor deterioration (p < 0.05). These mutants with hNPC implantations also retained weight longer than dNPC mutants did (p < 0.05). At the end of the experiment, animals were sacrificed for histological evaluation. Using fluorescent markers (Qtracker) incorporated into the hNPC prior to implantation and human nuclear immunostaining, we observed few hNPCs in the brains of carotid artery-injected mutants. However, significant numbers of surviving hNPCs were seen using these techniques in mutant cerebellums and hippocampi implanted with hNPC. Our results show that direct implantation of hNPCs reduced ataxic symptoms in the sHW rat, demonstrating that stereotactic route of stem cell delivery correlates to improved clinical outcomes.
The use of regenerative medicine to treat nervous system disorders like ataxia has been proposed to either replace or support degenerating neurons. In this study, we assessed the ability of human neural progenitor cells (hNPCs) to repair and restore the function of dying neurons within the spastic Han-Wistar rat (sHW), a model of ataxia. The sHW rat suffers from neurodegeneration of specific neurons, including cerebellar Purkinje cells and hippocampal CA3 pyramidal cells leading to the observed symptoms of forelimb tremor, hind-leg rigidity, gait abnormality, motor incoordination, and a shortened life span. To alleviate the symptoms of neurodegeneration and to replace or augment dying neurons, neuronal human progenitor cells were implanted into the sHW rats. At 30 d of age, male sHW mutant rats underwent subcutaneous implantation of an Alzet osmotic pump that infused cyclosporine (15 mg/kg/d) used to suppress the rat’s immune system. At 40 d, sHW rats received bilateral injections (500,000 cells in 5 µL media) of live hNPCs, dead hNPCs, live human embryonic kidney cells, or growth media either into the cerebellar cortex or into the hippocampus. To monitor results, motor activity scores (open-field testing) and weights of the animals were recorded weekly. The sHW rats that received hNPC transplantation into the cerebellum, at 60 d of age, displayed significantly higher motor activity scores and sustained greater weights and longevities than control-treated sHW rats or any hippocampal treatment group. In addition, cerebellar histology revealed that the transplanted hNPCs displayed signs of migration and signs of neuronal development in the degenerated Purkinje cell layer. This study revealed that implanted human progenitor cells reduced the ataxic symptoms in the sHW rat, identifying a future clinical use of these progenitor cells against ataxia and associated neurodegenerative diseases.
Cripto regulates stem cell function in normal and disease contexts via TGFbeta/activin/nodal, PI3K/Akt, MAPK and Wnt signaling. Still, the molecular mechanisms that govern these pleiotropic functions of Cripto remain poorly understood. We performed an unbiased screen for novel Cripto binding proteins using proteomics-based methods, and identified novel proteins including members of myosin II complexes, the actin cytoskeleton, the cellular stress response, and extracellular exosomes. We report that myosin II, and upstream ROCK1/2 activities are required for localization of Cripto to cytoplasm/membrane domains and its subsequent release into the conditioned media fraction of cultured cells. Functionally, we demonstrate that soluble Cripto (one-eyed pinhead in zebrafish) promotes proliferation in mesenchymal stem cells (MSCs) and stem cell-mediated wound healing in the zebrafish caudal fin model of regeneration. Notably, we demonstrate that both Cripto and myosin II inhibitors attenuated regeneration to a similar degree and in a non-additive manner. Taken together, our data present a novel role for myosin II function in regulating subcellular Cripto localization and function in stem cells and an important regulatory mechanism of tissue regeneration. Importantly, these insights may further the development of context-dependent Cripto agonists and antagonists for therapeutic benefit.
Olesen AT, Jensen BR, Uhlendorf TL, Cohen RW, Baan GC, Maas H. Muscle-specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat. J Appl Physiol 117: 989-997, 2014. First published September 4, 2014 doi:10.1152/japplphysiol.00587.2014.-The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO), and plantaris (PL) were assessed in anesthetized spastic and normally developed Han-Wistar rats. In addition, the extent of epimuscular myofascial force transmission between synergistic GA, SO, and PL, as well as between the calf muscles and antagonistic tibialis anterior (TA), was investigated. Active length-force curves of spastic GA and PL were narrower with a reduced maximal active force. In contrast, active length-force characteristics of spastic SO were similar to those of controls. In reference position (90°ankle and knee angle), higher resistance to ankle dorsiflexion and increased passive stiffness was found for the spastic calf muscle group. At optimum length, passive stiffness and passive force of spastic GA were decreased, whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However, the extent of this interaction was not different in spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes observed for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate that altered mechanics in spastic rats cannot be attributed to differences in mechanical interaction, but originate from individual muscular structures. muscle spasticity; mechanical properties; myofascial force transmission; muscle stiffness MUSCLE SPASTICITY HAS BEEN defined as a "velocity-depended resistance to stretch" (24) and arises secondary to upper motoneuron lesions with cerebral palsy and stroke as the most common examples (12). Individuals suffering from spasticity typically experience muscle weakness, enhanced joint stiffness, increased muscle tone, reduced range of joint motion, increased antagonistic co-contraction, and exaggerated reflexes (1,3,6,12,13,32,41,48). These effects severely impair the ability to perform daily activities, and treatment is often needed.To asses whether some of these symptoms are related to altered mechanical properties of muscle-tendon units (MTUs), passive and active length-force characteristics have been estimated as joint moment as a function of gastrocnemius (GA) fascicle length. Spastic GA was found to be stiffer than normally developed in such studies (2, 3). The active lengthforce curve of the spastic GA was narrower and the optimum length was shifted to a shorter fascicle length than in normally deve...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.