The use of regenerative medicine to treat nervous system disorders like ataxia has been proposed to either replace or support degenerating neurons. In this study, we assessed the ability of human neural progenitor cells (hNPCs) to repair and restore the function of dying neurons within the spastic Han-Wistar rat (sHW), a model of ataxia. The sHW rat suffers from neurodegeneration of specific neurons, including cerebellar Purkinje cells and hippocampal CA3 pyramidal cells leading to the observed symptoms of forelimb tremor, hind-leg rigidity, gait abnormality, motor incoordination, and a shortened life span. To alleviate the symptoms of neurodegeneration and to replace or augment dying neurons, neuronal human progenitor cells were implanted into the sHW rats. At 30 d of age, male sHW mutant rats underwent subcutaneous implantation of an Alzet osmotic pump that infused cyclosporine (15 mg/kg/d) used to suppress the rat’s immune system. At 40 d, sHW rats received bilateral injections (500,000 cells in 5 µL media) of live hNPCs, dead hNPCs, live human embryonic kidney cells, or growth media either into the cerebellar cortex or into the hippocampus. To monitor results, motor activity scores (open-field testing) and weights of the animals were recorded weekly. The sHW rats that received hNPC transplantation into the cerebellum, at 60 d of age, displayed significantly higher motor activity scores and sustained greater weights and longevities than control-treated sHW rats or any hippocampal treatment group. In addition, cerebellar histology revealed that the transplanted hNPCs displayed signs of migration and signs of neuronal development in the degenerated Purkinje cell layer. This study revealed that implanted human progenitor cells reduced the ataxic symptoms in the sHW rat, identifying a future clinical use of these progenitor cells against ataxia and associated neurodegenerative diseases.
The human pathogen Herpes Simplex Virus 1 (HSV-1) produces a lifelong infection in the majority of the world's population. While the generalities of alpha herpesvirus assembly and egress pathways are known, the precise molecular and spatiotemporal details remain unclear. In order to study this aspect of HSV-1 infection, we engineered a recombinant HSV-1 strain expressing a pH-sensitive reporter, gM-pHluorin. Using a variety of fluorescent microscopy modalities, we can detect individual virus particles undergoing intracellular transport and exocytosis at the plasma membrane. We show that particles exit from epithelial cells individually, not bulk release of many particles at once, as has been reported for other viruses. In multiple cell types, HSV-1 particles accumulate in clusters at the corners, edges, and cell-cell contacts. We show that this clustering effect is the result of individual particles undergoing exocytosis at preferential sites. We also show that the viral membrane proteins gE, gI, and US9, which have important functions in intracellular transport in neurons, have a subtle effect on preferential egress and clustering in non-neuronal cells. Importantly, by comparing HSV-1 to a related alpha herpesvirus, pseudorabies virus, we show that this preferential exocytosis and clustering effect is cell type-dependent, not virus dependent.
: Progressive neurological damage after brain or spinal cord trauma causes loss of motor function and treatment is very limited. Clotting and hemorrhage occur early after spinal cord (SCI) and traumatic brain injury (TBI), inducing aggressive immune cell activation and progressive neuronal damage. Thrombotic and thrombolytic proteases have direct effects on neurons and glia, both healing and also damaging, bidirectional immune cell interactions. Serine proteases in the thrombolytic cascade, tissue- and urokinase-type plasminogen activators (tPA and uPA), as well as the clotting factor thrombin have varied effects, increasing neuron and glial cell growth and migration (tPA), or conversely causing apoptosis (thrombin) and activating inflammatory cell responses. tPA and uPA activate plasmin and matrix metalloproteinases (MMPs) that break down connective tissue allowing immune cell invasion, promoting neurite outgrowth. Serine proteases also activate chemokines. Chemokines are small proteins that direct immune cell invasion, but also mediate neuron and glial cell communication. We are investigating a new class of therapeutics, virus-derived immune modulators; One that targets coagulation pathway serine proteases and a second that inhibits chemokines. We have demonstrated that local infusion of these biologics after SCI reduces inflammation providing early improved motor function. Serp-1 is a Myxomavirus-derived serine protease inhibitor, a serpin, that inhibits both thrombotic and thrombolytic proteases. M-T7 is a virus-derived chemokine modulator. Here we review the roles of thrombotic and thrombolytic serine proteases and chemoattractant proteins, chemokines, as potential therapeutic targets for SCI. We discuss virus-derived immune modulators as treatments to reduce progressive inflammation and ongoing nerve damage after SCI.
The development of compartmentalized neuron culture systems has been invaluable in the study of neuroinvasive viruses, including the alpha herpesviruses Herpes Simplex Virus 1 (HSV-1) and Pseudorabies Virus (PRV). This chapter provides updated protocols for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichamber cultures. In addition, we provide several illustrative examples of the types of experiments that are enabled by Campenot cultures: 1. Using fluorescence microscopy to investigate axonal outgrowth/extension through the chambers, and alpha herpesvirus infection, intracellular trafficking, and cell-cell spread via axons. 2. Using correlative fluorescence microscopy and cryo electron tomography to investigate the ultrastructure of virus particles trafficking in axons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.