BackgroundPseudomonas aeruginosa, a non-fermentative, gram-negative rod, is responsible for a wide variety of clinical syndromes in NICU patients, including sepsis, pneumonia, meningitis, diarrhea, conjunctivitis and skin infections. An increased number of infections and colonisations by P. aeruginosa has been observed in the neonatal intensive care unit (NICU) of our university hospital between 2005 and 2007.MethodsHand disinfection compliance before and after an educational programme on hand hygiene was evaluated. Identification of microrganisms was performed using conventional methods. Antibiotic susceptibility was evaluated by MIC microdilution. Genotyping was performed by PFGE analysis.ResultsThe molecular epidemiology of Pseudomonas aeruginosa in the NICU of the Federico II University hospital (Naples, Italy) and the infection control measures adopted to stop the spreading of P. aeruginosa in the ward were described. From July 2005 to June 2007, P. aeruginosa was isolated from 135 neonates and caused severe infections in 11 of them. Macrorestriction analysis of clinical isolates from 90 neonates identified 20 distinct genotypes, one major PFGE type (A) being isolated from 48 patients and responsible for 4 infections in 4 of them, four other distinct recurrent genotypes being isolated in 6 to 4 patients. Seven environmental strains were isolated from the hand of a nurse and from three sinks on two occasions, two of these showing PFGE profiles A and G identical to two clinical isolates responsible for infection. The successful control of the outbreak was achieved through implementation of active surveillance of healthcare-associated infections in the ward together with environmental microbiological sampling and an intense educational programme on hand disinfection among the staff members.ConclusionP. aeruginosa infections in the NICU were caused by the cross-transmission of an epidemic clone in 4 neonates, and by the selection of sporadic clones in 7 others. An infection control programme that included active surveillance and strict adherence to hand disinfection policies was effective in controlling NICU-acquired infections and colonisations caused by P. aeruginosa.
Antibiotic susceptibility of environmental isolates of Legionella spp. might be useful for the early detection of resistance to antibiotics that directly impacts on mortality and length of hospital stay.
Legionella is a pathogen that colonizes soils, freshwater, and building water systems. People who are most affected are those with immunodeficiencies, so it is necessary to monitor its presence in hospitals. The purpose of this study was to evaluate the presence of Legionella in water samples collected from hospitals in the Campania region, Southern Italy. A total of 3365 water samples were collected from January 2018 to December 2022 twice a year in hospital wards from taps and showers, tank bottoms, and air-treatment units. Microbiological analysis was conducted in accordance with the UNI EN ISO 11731:2017, and the correlations between the presence of Legionella and water temperature and residual chlorine were investigated. In total, 708 samples (21.0%) tested positive. The most represented species was L. pneumophila 2–14 (70.9%). The serogroups isolated were 1 (27.7%), 6 (24.5%), 8 (23.3%), 3 (18.9%), 5 (3.1%), and 10 (1.1%). Non-pneumophila Legionella spp. represented 1.4% of the total. Regarding temperature, the majority of Legionella positive samples were found in the temperature range of 26.0–40.9 °C. An influence of residual chlorine on the presence of the bacterium was observed, confirming that chlorine disinfection is effective for controlling contamination. The positivity for serogroups other than serogroup 1 suggested the need to continue environmental monitoring of Legionella and to focus on the clinical diagnosis of other serogroups.
Background: Vancomycin-resistant enterococci (VRE), often responsible for nosocomial infections, havefrequently been isolated from animal and vegetable foods. In our study we evaluated the antibioticsusceptibility of enterococci isolated from eight types of vegetables randomly selected from grocery stores inNaples.Methods: From July to November 2008, we analyzed 150 samples: the bacteria were isolated withstandardized methods and antibiotic susceptibility was determined using the disc diffusion method. Theresistance to vancomycin versus other antibiotics was assessed by the Kappa test.Results: 70% of the samples, mainly parsley (96.2%), showed enterococci. Of these, 59.1% belonged to thespecies Enterococcus faecium. Strains resistant to vancomycin and teicoplanin were isolated respectively in47.6% and 49.5% of the samples: the first one mainly in curly endive (72.7%) and the second one in parsley(76.9%). Almost all the isolated strains showed resistance to methicillin (89%), kanamycin (82%) andcephalothin (68%). The Kappa test showed statistically significant associations between resistance tovancomycin and resistance to teicoplanin, erythromycin, methicillin, tetracycline and chloramphenicol.Conclusions: Because of the possible involvement of food in the transmission of resistant micro-organisms tohuman intestinal microbiota, our data may provide the basis for future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.