Listeria monocytogenes contaminated processing equipment and the general packing environment have been implicated in deadly foodborne listeriosis outbreaks, highlighting the significance of proper sanitization and disinfection of food contact surfaces. This study aims to comprehensively evaluate antimicrobial efficacy of commercially available, economical sanitizers at practical concentrations against L. monocytogenes biofilm formed on polystyrene surfaces under different conditions. Ozonated water 1-min treatment at 1.0, 2.0, and 4.0 ppm resulted in ∼0.9, 3.4, and 4.1 log reduction of L. monocytogenes single strain biofilm grown on polystyrene surfaces, respectively. However, its efficacy was dramatically diminished in multi-strain L. monocytogenes biofilm and was further compromised by aged biofilm and in the presence of organic matter. Quaternary ammonium compounds (QAC) at 100/400 ppm, chlorine at 100/200 ppm, chlorine dioxide at 2.5/5.0 ppm and peroxyacetic acid (PAA) at 80/160 ppm resulted in 2.4/3.6, 2.0/3.1, 2.4/3.8, and 3.6/4.8 log reduction of L. monocytogenes single strain biofilm, respectively. Antimicrobial efficacies of all tested sanitizers against 7-day-old biofilm were much lower when compared to 2-day-old biofilm, with PAA being the least influenced by the age of the biofilm. Organic matter conditioning with diluted milk or apple juice dramatically impacted the antimicrobial efficacy of all sanitizers. PAA treatment of 1 min at 160–200 ppm resulted in a 3.2–3.5 log reduction against 7-day-old biofilm in the presence of organic matter, thus showing its effectiveness in eradicating L. monocytogenes biofilm on polystyrene surface. Collectively, data highlight the importance of timely and thoroughly cleaning food contact surfaces before disinfection and provides practical information and guidance for the food industry in selecting the most effective sanitizer in their sanitizing regimes to eliminate L. monocytogenes biofilm.
The Test Area North (TAN) site at the Idaho National Laboratory near Idaho Falls, ID, USA, sits over a trichloroethylene (TCE) contaminant plume in the Snake River Plain fractured basalt aquifer. Past observations have provided evidence that TCE at TAN is being transformed by biological natural attenuation that may be primarily due to co-metabolism in aerobic portions of the plume by methanotrophs. TCE co-metabolism by methanotrophs is the result of the broad substrate specificity of microbial methane monooxygenase which permits non-specific oxidation of TCE in addition to the primary substrate, methane. Arrays of experimental approaches have been utilized to understand the biogeochemical processes driving intrinsic TCE co-metabolism at TAN. In this study, aerobic methanotrophs were enumerated by qPCR using primers targeting conserved regions of the genes pmoA and mmoX encoding subunits of the particulate MMO (pMMO) and soluble MMO (sMMO) enzymes, respectively, as well as the gene mxa encoding the downstream enzyme methanol dehydrogenase. Identification of proteins in planktonic and biofilm samples from TAN was determined using reverse phase ultraperformance liquid chromatography (UPLC) coupled with a quadrupole-time-of-flight (QToF) mass spectrometer to separate and sequence peptides from trypsin digests of the protein extracts. Detection of MMO in unenriched water samples from TAN provides direct evidence of intrinsic methane oxidation and TCE co-metabolic potential of the indigenous microbial population. Mass spectrometry is also well suited for distinguishing which form of MMO is expressed in situ either soluble or particulate. Using this method, pMMO proteins were found to be abundant in samples collected from wells within and adjacent to the TCE plume at TAN.
A study was conducted under laboratory conditions to compare rates of nitrous oxide (N(2)O) and ammonia (NH(3)) emissions when soil was amended with anaerobically digested dairy manure slurry containing <30% food byproducts, raw dairy manure slurry, or urea. Slurries were applied via surface and subsurface methods. A second objective was to correlate genes regulating nitrification and denitrification with rates of N(2)O production, slurry treatment, and application method. Ammonia volatilization from incubated soil ranged from 140 g kg(-1) of total N applied in digested slurry to 230 g kg(-1) in urea. Subsurface application of raw dairy manure slurry decreased ammonia volatilization compared with surface application. Anaerobic digestion increased N(2)O production. Cumulative N(2)O loss averaged 27 g kg(-1) of total N applied for digested slurry, compared with 5 g kg(-1) for raw dairy slurry. Genes of interest included a 16S rRNA gene selective for β-subgroup proteobacterial ammonia-oxidizers, amoA, narG, and nosZ quantified with quantitative polymerase chain reaction (qPCR) and real-time polymerase chain reaction (RT-PCR). Application of anaerobically digested slurry increased nitrifier and denitrifier gene copies that correlated with N(2)O production. Expression of all genes measured via mRNA levels was affected by N applications to soil. This study provides new information linking genetic markers in denitrifier and nitrifier populations to N(2)O production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.