Because of outstanding optical properties and non‐vacuum solution processability of colloidal quantum dot (QD) semiconductors, many researchers have developed various light emitting diodes (LEDs) using QD materials. Until now, the Cd‐based QD‐LEDs have shown excellent properties, but the eco‐friendly QD semiconductors have attracted many attentions due to the environmental regulation. And, since there are many issues about the reliability of conventional QD‐LEDs with organic charge transport layers, a stable charge transport layer in various conditions must be developed for this reason. This study proposes the organic/inorganic hybrid QD‐LEDs with Cd‐free InP QDs as light emitting layer and inorganic ZrO2 nanoparticles as electron transport layer. The QD‐LED with bottom emission structure shows the luminescence of 530 cd m−2 and the current efficiency of 1 cd/A. To realize the transparent QD‐LED display, the two‐step sputtering process of indium zinc oxide (IZO) top electrode is applied to the devices and this study could fabricate the transparent QD‐LED device with the transmittance of more than 74% for whole device array. And when the IZO top electrode with high work‐function is applied to top transparent anode, the device could maintain the current efficiency within the driving voltage range without well‐known roll‐off phenomenon in QD‐LED devices.
We report efficient indium phosphide (InP) quantum dot-based light-emitting diodes (QD-LEDs). The current efficiency and the device stability of QD-LEDs were enhanced by increasing the thickness of ZnS outer shell of InP/ZnSe/ZnS multishell QDs. Reversible luminance degradation was observed in operation of QD-LEDs, which was hypothesized to result from QD charging. QDs having thicker ZnS shell with strong confinement suppressed the luminescence quenching as well as QD charging. Our findings about the reversible QD charging and the developed performance by the thick ZnS outer shell would help to rationalize the luminance quenching issue in QD-LED operation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.