Gene-drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years [AU please provide a real estimate, this seems vague]. We describe CRISPR-Cas9 endonuclease constructs that function as gene-drive systems in Anopheles gambiae, the main vector for malaria [AU:OK?]. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene-drive constructs designed to target and edit each gene [AU:OK?]. For each locus targeted we observed strong gene drive at the molecular level, with transmission rates to progeny of 91 to 99.6%. Population modelling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to control suppress mosquito populations to levels that do not support malaria transmission.
Complete population collapse of malaria vector Anopheles gambiae in cages is achieved using a gene drive that targets doublesex.Supplementary informationThe online version of this article (doi:10.1038/nbt.4245) contains supplementary material, which is available to authorized users.
Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.
Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.
BackgroundThe mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process.ResultsIn this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved.ConclusionsOur expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org), provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.