This paper presents the results of electrical performance measurements of 204 crystalline silicon-wafer based photovoltaic modules following long-term continuous outdoor exposure. The modules comprise a set of 53 module types originating from 20 different producers, all of which were originally characterized at the European Solar Test Installation (ESTI), over the period 1982-1986. The modules represent diverse generations of PV technologies, different encapsulation and substrate materials. The modules electrical performance was determined according to the standards IEC 60891 and the IEC 60904 series, electrical insulation tests were performed according to the recent IEC 61215 edition 2. Many manufacturers currently give a double power warranty for their products, typically 90% of the initial maximum power after 10 years and 80% of the original maximum power after 25 years. Applying the same criteria (taking into account modules electrical performance only and assuming 2Á5% measurement uncertainty of a testing lab) only 17Á6% of modules failed (35 modules out of 204 tested). Remarkably even if we consider the initial warranty period i.e. 10% of P max after 10 years, more than 65Á7% of modules exposed for 20 years exceed this criteria. The definition of life time is a difficult task as there does not yet appear to be a fixed catastrophic failure point in module ageing but more of a gradual degradation. Therefore, if a system continues to produce energy which satisfies the user need it has not yet reached its end of life. If we consider this level arbitrarily to be the 80% of initial power then all indications from the measurements and observations made in this paper are that the useful lifetime of solar modules is not limited to the commonly assumed 20 year.
The electrical ageing of photovoltaic modules during extended damp-heat tests at different stress levels is investigated for three types of crystalline silicon photovoltaic modules with different backsheets, encapsulants and cell types. Deploying different stress levels allows determination of an equivalent stress dose function, which is a first step towards a lifetime prediction of devices. The derived humidity dose is used to characterise the degradation of power as well as that of the solar cell's equivalent circuit parameters calculated from measured current-voltage characteristics. An application of this to the samples demonstrates different modes in the degradation and thus enables better understanding of the module's underlying ageing mechanisms. The analysis of changes in the solar cell equivalent circuit parameters identified the primary contributors to the power degradation and distinguished the potential ageing mechanism for each types of module investigated in this paper.
The TISO‐10‐kW solar plant, connected to the grid in 1982, is the oldest installation of this kind in Europe. Its history is well documented, and the full set of modules has been tested indoors at regular intervals over the years. After 35 years of operation, we observe an increase in the degradation rates and that the distributions of modules' performances are drastically changing compared with previous years. Two groups of modules can be observed: (a) group 1: 21.5% of the modules show a very modest degradation, described by a Gaussian distribution with mean yearly power degradation of only −0.2%/y. (b) Group 2: 72.9% of the modules form a negatively skewed distribution with a long tail described by mode (−0.54%/y), median (−0.62%/y), and mean (−0.69%/y) values. In earlier years, decreases in performances could strongly be correlated to losses in fill factor (FF). After 35 years, the situation changes and, for a subset of modules, losses in the current (Isc) are superimposed to losses in FF. The reasons for this will become clearer in part 2, where we will present results of a detailed visual inspection on the whole set of modules and will focus on safety aspect too. We conclude that, after 35 years of operation in a temperate climate, approximately 60% (~70% if considering a ± 3% measurement uncertainty) of the modules would still satisfy a warranty criteria that module manufacturers are presently considering to apply to the technology of tomorrow: 35 years of operation with a performance threshold set at 80% of the initial value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.