This paper develops a new hybrid model of floating point numbers suitable for operations in secure multi-party computations. The basic idea is to consider the significand of the floating point number as a fixed point number and implement elementary function applications separately of the significand. This gives the greatest performance gain for the power functions (e.g. inverse and square root), with computation speeds improving up to 18 times in certain configurations. Also other functions (like exponent and Gaussian error function) allow for the corresponding optimisation.We have proposed new polynomials for approximation, and implemented and benchmarked all our algorithms on the Sharemind secure multi-party computation framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.