Abstract. In this paper, we propose a efficient and secure point multiplication algorithm, based on double-base chains. This is achieved by taking advantage of the sparseness and the ternary nature of the socalled double-base number system (DBNS). The speed-ups are the results of fewer point additions and improved formulae for point triplings and quadruplings in both even and odd characteristic. Our algorithms can be protected against simple and differential side-channel analysis by using side-channel atomicity and classical randomization techniques. Our numerical experiments show that our approach leads to speed-ups compared to windowing methods, even with window size equal to 4, and other SCA resistant algorithms.
An algebraic integer (AI) based time-multiplexed row-parallel architecture and two final-reconstruction step (FRS) algorithms are proposed for the implementation of bivariate AI-encoded 2-D discrete cosine transform (DCT). The architecture directly realizes an error-free 2-D DCT without using FRSs between row-column transforms, leading to an 8×8 2-D DCT which is entirely free of quantization errors in AI basis. As a result, the user-selectable accuracy for each of the coefficients in the FRS facilitates each of the 64 coefficients to have its precision set independently of others, avoiding the leakage of quantization noise between channels as is the case for published DCT designs. The proposed FRS uses two approaches based on (i) optimized Dempster-Macleod multipliers and (ii) expansion factor scaling. This architecture enables low-noise high-dynamic range applications in digital video processing that requires full control of the finite-precision computation of the 2-D DCT. The proposed architectures and FRS techniques are experimentally verified and validated using hardware implementations that are physically realized and verified on FPGA chip. Six designs, for 4-and 8-bit input word sizes, using the two proposed FRS schemes, have been designed, simulated, physically implemented and measured. The maximum clock rate and block-rate achieved among 8-bit input designs are 307.787 MHz and 38.47 MHz, respectively, implying a pixel rate of 8×307.787≈2.462 GHz if eventually embedded in a real-time video-processing system. The equivalent frame rate is about 1187.35 Hz for the image size of 1920×1080. All implementations are functional on a Xilinx Virtex-6 XC6VLX240T FPGA device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.