Exploring directed acyclic graphs (DAGs) in a Markov equivalence class is pivotal to infer causal effects or to discover the causal DAG via appropriate interventional data. We consider counting and uniform sampling of DAGs that are Markov equivalent to a given DAG. These problems efficiently reduce to counting the moral acyclic orientations of a given undirected connected chordal graph on n vertices, for which we give two algorithms. Our first algorithm requires O(2nn4) arithmetic operations, improving a previous superexponential upper bound. The second requires O(k!2kk2n) operations, where k is the size of the largest clique in the graph; for bounded-degree graphs this bound is linear in n. After a single run, both algorithms enable uniform sampling from the equivalence class at a computational cost linear in the graph size. Empirical results indicate that our algorithms are superior to previously presented algorithms over a range of inputs; graphs with hundreds of vertices and thousands of edges are processed in a second on a desktop computer.
We consider the problem of computing k shortest paths in a two-dimensional environment with polygonal obstacles, where the jth path, for 1 j k, is the shortest path in the free space that is also homotopically distinct from each of the first j 1 paths. In fact, we consider a more general problem: given a source point s, construct a partition of the free space, called the kth shortest path map (k-SPM), in which the homotopy of the kth shortest path in a region has the same structure. Our main combinatorial result establishes a tight bound of ⇥(k 2 h + kn) on the worst-case complexity of this map. We also describe an O((k 3 h + k 2 n) log (kn)) time algorithm for constructing the map. In fact, the algorithm constructs the jth map for every j k. Finally, we present a simple visibility-based algorithm for computing the k shortest paths between two fixed points. This algorithm runs in O(m log n + k) time and uses O(m + k) space, where m is the size of the visibility graph. This latter algorithm can be extended to compute k shortest simple (non-self-intersecting) paths, taking O(k 2 m(m + kn) log(kn)) time. We invite the reader to play with our applet demonstrating k-SPMs [10].
We present a novel Bayesian method for the challenging task of estimating causal effects from passively observed data when the underlying causal DAG structure is unknown. To rigorously capture the inherent uncertainty associated with the estimate, our method builds a Bayesian posterior distribution of the linear causal effect, by integrating Bayesian linear regression and averaging over DAGs. For computing the exact posterior for all cause-effect variable pairs, we give an algorithm that runs in time O(3d d) for d variables, being feasible up to 20 variables. We also give a variant that computes the posterior probabilities of all pairwise ancestor relations within the same time complexity, significantly improving the fastest previous algorithm. In simulations, our Bayesian method outperforms previous methods in estimation accuracy, especially for small sample sizes. We further show that our method for effect estimation is well-adapted for detecting strong causal effects markedly deviating from zero, while our variant for computing posteriors of ancestor relations is the method of choice for detecting the mere existence of a causal relation. Finally, we apply our method on observational flow cytometry data, detecting several causal relations that concur with previous findings from experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.