Low-molecular-mass (LMM) thiol compounds are known to be important for many biological processes in various organisms but LMM thiols are understudied in anaerobic bacteria. In this work, we examined the production and turnover of nanomolar concentrations of LMM thiols with a chemical structure related to cysteine by the model iron-reducing bacterium Geobacter sulfurreducens. Our results show that G. sulfurreducens tightly controls the production, excretion and intracellular concentration of thiols depending on cellular growth state and external conditions. The production and cellular export of endogenous cysteine was coupled to the extracellular supply of Fe(II), suggesting that cysteine excretion may play a role in cellular trafficking to iron proteins. Addition of excess exogenous cysteine resulted in a rapid and extensive conversion of cysteine to penicillamine by the cells. Experiments with added isotopically labeled cysteine confirmed that penicillamine was formed by a dimethylation of the C-3 atom of cysteine and not via indirect metabolic responses to cysteine exposure. This is the first report of de novo metabolic synthesis of this compound. Penicillamine formation increased with external exposure to cysteine but the compound did not accumulate intracellularly, which may suggest that it is part of G. sulfurreducens’ metabolic strategy to maintain cysteine homeostasis. Our findings highlight and expand on processes mediating homeostasis of cysteine-like LMM thiols in strict anaerobic bacteria. The formation of penicillamine is particularly noteworthy and this compound warrants more attention in microbial metabolism studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.