External Thermal Insulation Composite Systems (ETICS) with Rendering are widely used in both rehabilitation and new building projects, even in areas with harsh climates such as the western regions of Norway. However, we have seen extensive cases of defects involving such systems. This paper presents a comprehensive review of Norwegian experiences regarding the durability of ETICS on walls. The presented results are based on building research conducted by SINTEF 61 as well as 30 accelerated climatic laboratory experiments over the last 25 years on similar façade systems. These systems generally perform satisfactorily if thoroughly designed and carefully erected. However, according to the survey, the systems are not very robust. Even minor errors in design techniques and/or craftsmanship can lead to rendering defects. The investigations clearly show that ETICS is particularly vulnerable when exposed to severe driving rain conditions. ETICS provides only a single-stage protection against wind and precipitation and do not dry effectively after being wetted. Hence, the resultant cracks and other rendering weaknesses could be disastrous, enabling moisture to penetrate into the thermal insulation and the wall behind. In areas with heavy driving rain, we recommend façade solutions erected in accordance with the principle of two-stage tightening rather than ETICS.
Abstract:The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.