<p>The AutoICE Competition, launched on ESA&#8217;s AI4EO platform, brings together AI and Earth Observation practitioners to address the challenge of &#8220;automated sea ice mapping&#8221; from Sentinel-1 SAR data. Traversing the polar waters safely and efficiently requires up-to-date maps of the constantly moving and changing sea ice conditions showing the current sea ice extent, local concentration, and auxiliary descriptions of the ice conditions. For several decades, sea ice charts have been manually produced by visually inspecting and analysing satellite imagery.</p><p>The objective of the AutoICE challenge is to advance the state-of-the-art for automatic sea ice parameter retrieval from SAR data to derive more robust and accurate sea ice maps. The challenge design and evaluation criteria have been created with input from machine learning experts and members of the International Ice Charting Working Group (IICWG). In this competition, participants are tasked to build machine learning models using the available state-of-the-art challenge dataset and to submit their model results for each of the three sea ice parameters: sea ice concentration, stage of development and floe size. The dataset made available in this challenge contains Sentinel-1 active microwave (SAR) data and corresponding Microwave Radiometer (MWR) data from the AMSR2 satellite sensor to enable challenge participants to exploit the advantages of both instruments and to create data fusion models. Label data in the challenge datasets are ice charts produced by both the Greenland ice service at the Danish Meteorological Institute (DMI) and the Canadian Ice Service (CIS). The challenge datasets also contain other auxiliary data such as the distance to land and numerical weather prediction model data. Two versions of the challenge dataset are available, a raw dataset and a ready-to-train dataset. The datasets each consist of the same 513 training and 20 test (without label data) scenes, however, the ready-to-train version has been further prepared for model training. In addition, a number of tools are made available to help the participants get started quickly, including access to machine learning computing resources on the ESA Polar Thematic Exploitation Platform (Polar TEP). The competition was initiated on the 23rd of&#160; November 2022 and is expected to conclude on the 17th of April 2023.</p><p>Here, we present the overall challenge, the underlying objective, the available state-of-the-art dataset and resources, the progress of the challenge and its results, as well as a sneak peek of our upcoming ASID-v3 dataset.&#160;</p>
Sea ice information has traditionally been associated with Manual Ice Charts, however the demand for accurate forecasts is increasing. This study presents an improved operational forecast system for the Arctic sea ice focusing on the Greenlandic waters. In addition, we present different observational sea ice products and conduct inter-comparisons. First, a re-analysis forced by ERA5 from 2000 to 2021 is evaluated to ensure that the forecast system is stable over time and to provide statistics for the users. The output is similar to the initial conditions for a forecast. Secondly, the sea ice forecast system is tested and evaluated based on two re-forecasts forced by the high resolution ECMWF-HRES forecast for the period from January 2019 to September 2021. Both the re-analysis and the re-forecasts include assimilation of sea surface temperatures and sea ice concentrations. We validate the re-analysis and the re-forecast systems for sea ice concentration against different remotely sensed observational products by computing the Integrated Ice Edge Error metric at the initial conditions of each system. The results reveal that the re-analysis and the re-forecast perform well. However, the summertime retreat of sea ice near the western Greenlandic coast seems to be delayed a few days compared with the observations. Importantly, part of the bias associated with the model representation of the sea ice edge is associated with the observational errors due to limitations in the passive microwave product in summertime and also near the coast. An inter-comparison of the observational sea ice products suggests that the model performance could be improved by assimilation of sea ice concentrations derived from a newly-developed automated sea ice product. In addition, analysis of persistence shows that the re-forecast has better skill than the persistence forecast for the vast majority of the time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.