CRISPR-Cas12a has been widely used for genome editing and diagnostic applications, yet it is not fully understood how RNA-guided DNA recognition activates the sequential cleavage of the non-target strand (NTS) followed by the target strand (TS). Here we used singlemolecule magnetic tweezers microscopy, ensemble gel-based assays and nanopore sequencing to explore the coupling of DNA unwinding and cleavage. In addition to dynamic R-loop formation, we also directly observed transient dsDNA unwinding downstream of the 20 bp DNA:RNA hybrid and, following NTS cleavage and prior to TS cleavage, formation of a hyperstable "clamped" Cas12a-DNA intermediate resistant to DNA twisting. Alanine substitution of a conserved aromatic amino acid "gate" in the REC2 domain that normally caps the heteroduplex produced more frequent and extended downstream DNA breathing, a longer-lived twist-resistant state, and a 16-fold faster rate of TS cleavage. We suggest that both breathing and clamping events, regulated by the gate and by NTS cleavage, deliver the unwound TS to the RuvC nuclease and result from previously described REC2 and NUC domain motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.