Using dynamic causal modelling (DCM), we have presented provisional evidence to suggest: (i) the mismatch negativity (MMN) is generated by self-organised interactions within a hierarchy of cortical sources and (ii) the MMN rests on plastic change in both extrinsic (between-source) and intrinsic (within source) connections (Garrido et al., under review). In this work we re-visit these two key issues in the context of the roving paradigm. Critically, this paradigm allows us to discount any differential response to differences in the stimuli per se, because the standards and oddballs are physically identical. We were able to confirm both the hierarchical nature of the MMN generation and the conjoint role of changes in extrinsic and intrinsic connections. These findings are consistent with a predictive coding account of repetitionsuppression and the MMN, which gracefully accommodates two important mechanistic perspectives; the model adjustment hypothesis (Winkler et al., 1996;Näätänen and Winkler, 1999;Sussman and Winkler, 2001) and the adaptation hypothesis (May et al., 1999;and Jääskeläinen et al., 2004).
The event-related potential (ERP) component mismatch negativity (MMN) is a neural marker of human echoic memory. MMN is elicited by deviant sounds embedded in a stream of frequent standards, reflecting the deviation from an inferred memory trace of the standard stimulus. The strength of this memory trace is thought to be proportional to the number of repetitions of the standard tone, visible as the progressive enhancement of MMN with number of repetitions (MMN memory-trace effect). However, no direct ERP correlates of the formation of echoic memory traces are currently known. This study set out to investigate changes in ERPs to different numbers of repetitions of standards, delivered in a roving-stimulus paradigm in which the frequency of the standard stimulus changed randomly between stimulus trains. Normal healthy volunteers (n ϭ 40) were engaged in two experimental conditions: during passive listening and while actively discriminating changes in tone frequency. As predicted, MMN increased with increasing number of standards. However, this MMN memory-trace effect was caused mainly by enhancement with stimulus repetition of a slow positive wave from 50 to 250 ms poststimulus in the standard ERP, which is termed here "repetition positivity" (RP). This RP was recorded from frontocentral electrodes when participants were passively listening to or actively discriminating changes in tone frequency. RP may represent a human ERP correlate of rapid and stimulus-specific adaptation, a candidate neuronal mechanism underlying sensory memory formation in the auditory cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.