Renewable energy technologies can help us combat climate change and hydrokinetic energy conversion systems could play a major role. The simplicity of hydrokinetic devices helps us to exploit renewable sources, especially in remote locations, which is not possible with conventional methods. A new type of hydrokinetic device called the Energy Conveyor Belt was designed, which works on the concept of conveyor belt technology. Numerical simulations are performed on the design of the Energy Conveyor Belt with Ansys FLUENT to optimize its performance. Some of the optimized models produced a maximum power slightly above 1 kW. The numerical results are then compared to the experimental results of other hydrokinetic turbines. The compactness and flexibility of the design give the Energy Conveyor Belt an advantage over other hydrokinetic devices in regions with fluctuating water levels. Further research has to be undertaken into cascading systems to increase the overall power generated by the system.
Primarily released by the conversion of primary fossil energy sources, anthropogenic greenhouse gas emissions influence global warming fundamentally. Since they enable increasing the share of sustainable energy sources in the energy supply and reducing greenhouse gas emissions through targeted integration, power-to-X technologies promise to be an important element of compliance with impending regulations and laws. VDI 4663 guideline for strategically optimizing (technical) processes applies the physical optimum, a promising performance indicator for a unified, time-independent, and structured evaluation of power-to-X technologies that defines an operation under physically optimal conditions as a limit value. This study applies VDI 4663 to a power-to-X system and evaluates different components. It specifically examines current power-to-gas applications, the physical optimum as a limit-oriented indicator and its application to complex processes, the physically optimal operation of electrolysis and methanation, heat transfer as a critical component of methanation, the evaluation of a heat exchanger based on the physical optimum, and targeted process optimization based on VDI 4663. The outcome is an energy index for the evaluation of a heat exchanger, factoring in its structural design. The physical optimum of electrolysis and methanation developed here can also be employed as the basis for targeted optimization. This study serves as a basis for the evaluation of other power-to-X systems and introduces the application of VDI 4663. Additionally, the applicability of the physical optimum to chemistry-based processes is validated.
Der Aufbau einer Wasserstoffwirtschaft bietet die Chance klima- und energiepolitische Ziele zu erreichen. Die Umsetzung und Realisierung mittels Power-to-Gas(PtG)-Anlagen sind von Wechselwirkungen zwischen den erforderlichen Ressourcen und der Energiewirtschaft abhängig. Insbesondere die Ressource Wasser wird durch die Realisierung mittels Elektrolyse beeinflusst. In der vorliegenden Studie wird der Ausbau von PtG-Anlagen in Mitteldeutschland dargestellt, der Wasserbedarf analysiert und mit der regionalen Wasserverfügbarkeit ins Verhältnis gesetzt. Das Aufkommen von Wasserstress in Mitteldeutschland durch PtG-Anlagen ist über 2030 hinaus kaum ersichtlich, jedoch zeichnet sich die Verstärkung bereits lokal vorhandener Wasserdefizite ab. Als positive Entwicklung für das Wasserdargebot wurde der Braunkohleausstieg identifiziert. Gleichwohl ist die Modellregion von Trockenheit betroffen, weshalb ein nachhaltiges Wassermanagement unerlässlich ist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.