The automated generation of information indicating the characteristics of articles such as headlines, key phrases, summaries and categories helps writers to alleviate their workload. Previous research has tackled these tasks using neural abstractive summarization and classification methods. However, the outputs may be inconsistent if they are generated individually. The purpose of our study is to generate multiple outputs consistently. We introduce a multi-task learning model with a shared encoder and multiple decoders for each task. We propose a novel loss function called hierarchical consistency loss to maintain consistency among the attention weights of the decoders. To evaluate the consistency, we employ a human evaluation. The results show that our model generates more consistent headlines, key phrases and categories. In addition, our model outperforms the baseline model on the ROUGE scores, and generates more adequate and fluent headlines.
Automated generation of medical reports that describe the findings in the medical images helps radiologists by alleviating their workload. Medical report generation system should generate correct and concise reports. However, data imbalance makes it difficult to train models accurately. Medical datasets are commonly imbalanced in their finding labels because incidence rates differ among diseases; moreover, the ratios of abnormalities to normalities are significantly imbalanced. We propose a novel reinforcement learning method with a reconstructor to improve the clinical correctness of generated reports to train the data-to-text module with a highly imbalanced dataset. Moreover, we introduce a novel data augmentation strategy for reinforcement learning to additionally train the model on infrequent findings. From the perspective of a practical use, we employ a Two-Stage Medical Report Generator (TS-MRGen) for controllable report generation from input images. TS-MRGen consists of two separated stages: an image diagnosis module and a data-to-text module. Radiologists can modify the image diagnosis module results to control the reports that the data-totext module generates. We conduct an experiment with two medical datasets to assess the data-to-text module and the entire two-stage model. Results demonstrate that the reports generated by our model describe the findings in the input image more correctly.
Much research has reported the training data of summarization models are noisy; summaries often do not reflect what is written in the source texts. We propose an effective method of curriculum learning to train summarization models from such noisy data. Curriculum learning is used to train sequence-to-sequence models with noisy data. In translation tasks, previous research quantified noise of the training data using two models trained with noisy and clean corpora. Because such corpora do not exist in summarization fields, we propose a model that can quantify noise from a single noisy corpus. We conduct experiments on three summarization models; one pretrained model and two non-pretrained models, and verify our method improves the performance. Furthermore, we analyze how different curricula affect the performance of pretrained and nonpretrained summarization models. Our result on human evaluation also shows our method improves the performance of summarization models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.