A highly efficient solid-state solar cell (TiO2/dye/CuI) with improved stability was fabricated by controlling the pore filling of the porous dyed TiO2 layer with molten salt capped CuI crystals and improving the TiO2 by necking with ZnO. The molten salt controls the CuI crystal growth and acts as a protective coating for CuI nanocrystals, and necking with the more conductive ZnO improves electrical contact between TiO 2 particles, both contributing to improved cell performance. Cells achieved efficiency as high as 3.8% with improved stability under continuous illumination for about 2 weeks.
An ultrathin overlayer of MgO on TiO2 is shown to drastically improve the stability of solid-state dye-sensitized solar cell using CuI as a hole conductor in addition to solar energy conversion efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.