In order to locate the genetic regions in the swine genome that are responsible for economically important traits, a resource population has been constructed by mating two female Meishan pigs with a male Göttingen miniature pig. In subsequent generations, 265 F2 offspring were produced from two F1 males and 19 F1 females. The F2 offspring were scored for eight traits including growth rate, teat number, vertebra number and backfat thickness, and genotyped for 318 genetic markers spanning the swine genome. Least-square analysis revealed quantitative trait loci (QTL) effects for vertebra number on chromosomes 1 and 2; for teat number on chromosomes 1 and 7; for birth weight on chromosome 1; for average daily gain between 4 and 13 weeks of age on chromosomes 9 and 10; for backfat thickness on chromosome 7; and for backskin thickness on chromosome 3.
Eggshell quality deterioration associated with heat stress is a well-known phenomenon. The involvement of the 28-kDa calcium-binding protein (calbindin, CaBP-D28k) localization in this failure is not clearly understood. To test a possible direct effect of ambient temperature on calbindin-D28k localization, 40 White Leghorn laying hens were housed in individual cages and exposed to high ambient temperature (30-33°C) and thermoneutral temperature (20-22°C) which served as a control. Eggshell quality characteristics and immunohistochemical localization of all intestinal segments and eggshell gland calbindin-D28k were performed under both environmental conditions. As expected, egg weight, eggshell thickness, eggshell percentage, and eggshell density were negatively affected by high ambient temperature (P ≤ 0.01). Immunohistochemistry showed that calbindin was localized in the intestinal enterocyte cytoplasm and glandular cell cytoplasm under thermoneutral conditions. However, the calbindin intensity was prominently decreased in ileum, cecum, colon, and eggshell gland under heat stress conditions. Therefore, it could be concluded that calbindin-D28k localization in intestinal segments and eggshell gland is negatively affected by high ambient temperature which might be related to the deterioration of eggshell quality characteristics under heat stress conditions.
Medullary bone (MB), an estrogen-dependent reproductive tissue present in extant gravid birds, is texturally, histologically and compositionally distinct from other bone types. Phylogenetic proximity led to the proposal that MB would be present in non-avian dinosaurs, and recent studies have used microscopic, morphological, and regional homologies to identify this reproductive tissue in both theropod and ornithischian dinosaurs. Here, we capitalize on the unique chemical and histological fingerprint of MB in birds to characterize, at the molecular level, MB in the non-avian theropod Tyrannosaurus rex (MOR 1125), and show that the retention of original molecular components in fossils allows deeper physiological and evolutionary questions to be addressed.
Genotoxicity and Cytotoxicity of Multiwall Carbon Nanotubes in Cultured ChineseHamster Lung Cells in Comparison with Chrysotile A Fibers: Masumi ASAKURA, et al. Japan Bioassay Research Center, Japan Industrial Safety and Health Association-Objectives: The potential applications and industrial production of multi-wall carbon nanotubes (MWCNT) have raised serious concerns about their safety for human health and the environment. The present study was designed to examine the in vitro cytotoxicity and genotoxicity of MWCNT and UICC chrysotile A (chrysotile). Methods: Cytotoxicity using both colony formation and lactate dehydrogenase (LDH) assays and genotoxicity including chromosome aberration, micronucleus induction and hgprt mutagenicity were examined by exposing cultured Chinese hamster lung (CHL/IU) cells to MWCNT or chrysotile at different concentrations. Results:The in vitro cytotoxicity of MWCNT depended on the solvent used for suspension of MWCNT and ultrasonication duration of the MWCNT suspension. A combination of DMSO/culture medium and 3-minute ultrasonication resulted in a well-dispersed medium with dispersion and isolation of agglomerated MWCNT by ultrasonication which manifested the highest cytotoxicity. The cytotoxicity was more potent for chrysotile than MWCNT. The genotoxicity of MWCNT was characterized by the formation of polyploidy without structural chromosome aberration, and an increased number of bi-and multi-nucleated cells without micronucleus induction, as well as negative hgprt mutagenicity. Chrysotile exhibited essentially the same genotoxicity as MWCNT, except for marginal but significant induction of micronuclei. MWCNT and chrysotile were incompletely internalized in the cells and localized in the cytoplasm. Conclusions: MWCNT and chrysotile were cytotoxic and genotoxic in Chinese hamster lung cells, but might interact indirectly with DNA. The results suggest that both test substances interfere physically with biological processes during cytokinesis. (J Occup Health 2010; 52: 155-166)
Salinity critically limits rice metabolism, growth, and productivity worldwide. Improvement of the salt resistance of locally grown high-yielding cultivars is a slow process. The objective of this study was to develop a new salt-tolerant rice germplasm using speed-breeding. Here, we precisely introgressed the hst1 gene, transferring salinity tolerance from “Kaijin” into high-yielding “Yukinko-mai” (WT) rice through single nucleotide polymorphism (SNP) marker-assisted selection. Using a biotron speed-breeding technique, we developed a BC3F3 population, named “YNU31-2-4”, in six generations and 17 months. High-resolution genotyping by whole-genome sequencing revealed that the BC3F2 genome had 93.5% similarity to the WT and fixed only 2.7% of donor parent alleles. Functional annotation of BC3F2 variants along with field assessment data indicated that “YNU31-2-4” plants carrying the hst1 gene had similar agronomic traits to the WT under normal growth condition. “YNU31-2-4” seedlings subjected to salt stress (125 mM NaCl) had a significantly higher survival rate and increased shoot and root biomasses than the WT. At the tissue level, quantitative and electron probe microanalyzer studies indicated that “YNU31-2-4” seedlings avoided Na+ accumulation in shoots under salt stress. The “YNU31-2-4” plants showed an improved phenotype with significantly higher net CO2 assimilation and lower yield decline than WT under salt stress at the reproductive stage. “YNU31-2-4” is a potential candidate for a new rice cultivar that is highly tolerant to salt stress at the seedling and reproductive stages, and which might maintain yields under a changing global climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.