Summary The conserved transcriptional regulator Heat Shock Factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol, yet its regulation is poorly understood. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC and Hsf1 senses an RQC-mediated translation stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.
Translation arrest by polybasic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control (RQC) system. Here we report that ubiquitination of the 40S ribosomal protein uS10 by the E3 ubiquitin ligase Hel2 (or RQT1) is required for RQC. We identify a RQC-trigger (RQT) subcomplex composed of the RNA helicase-family protein Slh1/Rqt2, the ubiquitin-binding protein Cue3/Rqt3, and yKR023W/Rqt4 that is required for RQC. The defects in RQC of the RQT mutants correlate with sensitivity to anisomycin, which stalls ribosome at the rotated form. Cryo-electron microscopy analysis reveals that Hel2-bound ribosome are dominantly the rotated form with hybrid tRNAs. Ribosome profiling reveals that ribosomes stalled at the rotated state with specific pairs of codons at P-A sites serve as RQC substrates. Rqt1 specifically ubiquitinates these arrested ribosomes to target them to the RQT complex, allowing subsequent RQC reactions including dissociation of the stalled ribosome into subunits.
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGDRQC−) can occur in a Not4‐dependent manner.
Translation arrest leads to an endonucleolytic cleavage of mRNA that is termed no-go decay (NGD). It has been reported that the Dom34:Hbs1 complex stimulates this endonucleolytic cleavage of mRNA induced by translation arrest in vivo and dissociates subunits of a stalled ribosome in vitro. Here we report that Dom34:Hbs1 dissociates the subunits of a ribosome that is stalled at the 3' end of mRNA in vivo, and has a crucial role in both NGD and nonstop decay. Dom34:Hbs1-mediated dissociation of a ribosome that is stalled at the 3' end of mRNA is required for degradation of a 5'-NGD intermediate. Dom34:Hbs1 facilitates the decay of nonstop mRNAs from the 3' end by exosomes and is required for the complete degradation of nonstop mRNA decay intermediates. We propose that Dom34:Hbs1 stimulates degradation of the 5'-NGD intermediate and of nonstop mRNA by dissociating the ribosome that is stalled at the 3' end of the mRNA.
The potentially deleterious effects of aberrant mRNA lacking a termination codon (nonstop mRNA) are ameliorated by translation arrest, proteasome-mediated protein destabilization, and rapid mRNA degradation. Because polylysine synthesis via translation of the poly(A) mRNA tail leads to translation arrest and protein degradation by the proteasome, we examined the effects of other amino acid sequences. Insertion of 12 consecutive basic amino acids between GFP and HIS3 reporter genes, but not a stemloop structure, resulted in degradation of the truncated green fluorescent protein (GFP) products by the proteasome. Translation arrest products derived from GFP-R12-FLAG-HIS3 or GFP-K12-FLAG-HIS3 mRNA were detected in a not4⌬ mutant, and MG132 treatment did not affect the levels of the truncated arrest products. Deletion of other components of the Ccr4-Not complex did not increase the levels of the translation arrest products or reporter mRNAs. A L35A substitution in the Not4p RING finger domain, which disrupted its interaction with the Ubc4/Ubc5 E2 enzyme and its activity as an ubiquitin-protein ligase, also abrogated the degradation of arrest products. These results suggest that Not4p, a component of the Ccr4-Not complex, may act as an E3 ubiquitin-protein ligase for translation arrest products. The results let us propose that the interaction between basic amino acid residues and the negatively charged exit tunnel of the ribosome leads to translation arrest followed by Not4p-mediated ubiquitination and protein degradation by the proteasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.