Background The use of intraoral scanners (IOS) has facilitated the use of digital workflows for the fabrication of implant-supported prostheses not only for single missing teeth, but also for multiple missing teeth. However, the clinical application of IOS and computer-aided design/manufacturing (CAD/CAM) in implant-supported prosthodontics remains unclear. This study aimed to compare the accuracy of digital and silicone impressions for single-tooth implants for bounded edentulous spaces and two-unit and three-unit implant-supported fixed dental prostheses for free-end edentulous spaces. Methods This study enrolled 30 patients (n = 10 for each of the three groups) with an average age of 61.9 years. Conventional silicone-based and digital IOS-based impressions were made for all patients, and the implant superstructures were fabricated. We measured the scan-body misfit and compared the accuracy of the impressions for single-unit, two-unit, and three-unit implant prostheses with a bounded edentulous space by superimposing the standard triangulated language (STL) data obtained from IOS over the STL data of the plaster model used for final prosthesis fabrication. The scan bodies of the superimposed single-molar implant, two-unit implant prosthesis without teeth on the mesial side, two-unit implant prosthesis without teeth on the distal side, three-unit implant prosthesis without teeth on the mesial side, and three-unit implant prosthesis without teeth on the distal side were designated as A, B1, B2, C1, and C2, respectively. The misfit for each scan body was calculated and the accuracies were compared using the Tukey–Kramer method. Results The average scan-body misfit for conditions A, B1, B2, C1, and C2 was 40.5 ± 18.9, 45.4 ± 13.4, 56.5 ± 9.6, 50.7 ± 14.9, and 80.3 ± 12.4 μm, respectively. Significant differences were observed between the accuracies of A and B2, A and C2, and C1 and C2 (P < 0.001). Conclusions IOS and CAD/CAM can find clinical applications for implant-supported prostheses of up to three units for a bounded edentulous saddle. The use of IOS could render implant treatment easier, benefiting both the surgeons and patients. Prosthesis maladjustment may lead to peri-implantitis and prosthetic fracture. Therefore, further validation of the accuracy of IOS impressions is required in patients with multiple missing teeth in long-span implant prostheses.
Implant treatment has evolved and is now performed using various techniques. However, the osseointegration duration required for poor primary stability or immediate loading is unclear and depends largely on the surgeon’s experience. We sought to verify whether implant stability can be quantified after immediate loading, using AnyCheck®. Six implants were placed in simulated bone blocks classified by bone quality as D1–D4 and further divided into healing abutment and provisional crown groups. The implant stability test (IST) values of both groups were measured using AnyCheck®. All bone qualities from D1 to D4 differed significantly between the provisional crown and healing abutment groups (p < 0.001). In both groups, the IST values were the highest for D1 bone and lowest for D4 bone. There were significant differences in bone quality between the provisional crown and healing abutment groups. The correlations between the groups differed based on bone quality. However, the IST values of both groups differed by a minimum of 4 and maximum of 7. These results suggest that AnyCheck® is useful for quantifying the implant stability after immediate loading. Using an index to quantify the implant and bone stability for immediate loading may shorten treatment duration and increase success rates.
Polylactic acid (PLA) has gained considerable attention as an alternative to petroleum-based materials due to environmental concerns. We fabricated implant models with fused filament fabrication (FFF) 3D printers using PLA, and the accuracies of these PLA models were compared with those of plaster models made from silicone impressions and resin models made with digital light processing (DLP). A base model was obtained from an impact-training model. The scan body was mounted on the plaster, resin, and PLA models obtained from the base model, and the obtained information was converted to stereolithography (STL) data by the 3D scanner. The base model was then used as a reference, and its data were superimposed onto the STL data of each model using Geomagic control. The horizontal and vertical accuracies of PLA models, as calculated using the Tukey–Kramer method, were 97.2 ± 48.4 and 115.5 ± 15.1 μm, respectively, which suggests that the PLA model is the least accurate among the three models. In both cases, significant differences were found between PLA and gypsum and between the PLA and resin models. However, considering that the misfit of screw-retained implant frames should be ≤150 µm, PLA can be effectively used for fabricating implant models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.