The effects of certain disinfectants on the stability of a polymethyl methacrylate denture base resin were investigated, including those of a novel disinfection method using reactive oxygen species (ROS). The surface roughness and flexural strength were analyzed to assess the effects of the disinfectants on material properties. The following disinfectants were tested: 5% sodium hypochlorite, 70% alcohol, and ROS. Furthermore, the attachment of Candida albicans to the resin surface was investigated. The disinfection method using sodium hypochlorite significantly increased the surface roughness and decreased flexural strength. The surface roughness and flexural strength of the ROS-treated specimens did not significantly differ from those of the control specimens, and the ROS-treated specimens exhibited diminished Candida attachment. These results demonstrate that the ROS disinfection method preserves acceptable material stability levels in polymethyl methacrylate resins.
Titanium are often used as dental materials, pure titanium present low strength and titanium alloy is reported poor biocompatibility, respectively. To overcome the problem, we fabricated high-strength multi-directional forged (MDF) titanium with improved mechanical properties without changing the chemical composition and evaluated its applicability in prosthetic crowns. Cutting tests: the average absolute value of the difference before and after cutting was calculated as the uncut amount. Surface evaluations: MDF titanium, pure titanium, and the Ti-6Al-4V alloy were the surface properties (the surface roughness, the contact angles, glossiness) of the samples were evaluated. The fitness test used digital data. These demonstrated that the good workability of high-strength MDF titanium. The surface-roughness and contact-angle properties of MDF titanium and pure titanium were similar. The fitness test showed no significant differences between MDF titanium and pure titanium crowns. These results suggest that MDF titanium is promising for fabricating prosthetic crowns in dental applications.
To determine the effect of titanium (Ti) surface modification by ultraviolet irradiation (UVI) on the bond strength between Ti and porcelain. Grade 2 Ti plates were allotted to five groups: sandblasted (SA), 15 min UVI (UV), SA+5 min UVI (SA+UV5), SA+10 min UVI (SA+UV10), and SA+15 min UVI (SA+UV15). After surface treatment, porcelain was added. A precious metal (MC) was used for comparison with Ti. The effects of 24-h storage at room temperature versus thermal cycling only at 5 and 55°C in water were evaluated. Subsequently, the tensile strength of each sample was tested. Data were analyzed using one-way analysis of variance and the Tukey test. In both the room temperature and thermal cycling groups, the MC and SA+15 min UVI samples showed significantly greater bond strengths than the other samples (p<0.05). UVI processing efficiently increases the bond strength between porcelain and the Ti surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.