Lung perfused blood volume imaging by dual-energy CT is feasible for the evaluation of pulmonary perfusion and is comparable to pulmonary scintigraphy. It is possible to evaluate vessels and pulmonary perfusion with CT pulmonary angiography and LPBV images and to assess pulmonary perfusion more definitively in diagnosing chronic pulmonary thromboembolic embolism.
Dual-energy CT can be applied for bone elimination in cerebral CT angiography (CTA). The aim of this study was to compare the results of dual-energy direct bone removal CTA (DE-BR-CTA) with those of digital subtraction angiography (DSA). Twelve patients with intracranial aneurysms and/or ICA stenosis underwent a dual-source CT in dual-energy mode. Post-processing software selectively removed bone structures using the two energy data sets. Three-dimensional images with and without bone removal were reviewed and compared to DSA. Dual-energy bone removal was successful in all patients. For 10 patients, bone removal was good and CTA maximum-intensity projection (MIP) images could be used for vessel evaluation. For two patients, bone removal was moderate with some bone remnants, but this did not inhibit the three-dimensional visualization. Three aneurysms adjacent to the skull base were only partially visible in conventional CTA but were fully visible in DE-BR-CTA. In five patients with ICA stenosis, DE-BR-CTA revealed the stenotic lesions on the MIP images. The correlation between DSA and DE-BR-CTA was good (R (2)=0.822), but DE-BR-CTA led to an overestimation of stenosis. DE-BR-CTA was able to eliminate bone structure using only a single CT data acquisition and is useful to evaluate intracranial aneurysms and stenosis.
We evaluated quantification of calcified carotid stenosis by dual-energy (DE) CTA and dual-energy head bone and hard plaque removal (DE hard plaque removal) and compared the results to those of digital subtraction angiography (DSA). Eighteen vessels (13 patients) with densely calcified carotid stenosis were examined by dual-source CT in the dual-energy mode (tube voltages 140 kV and 80 kV). Head bone and hard plaques were removed from the dual-energy images by using commercial software. Carotid stenosis was quantified according to NASCET criteria on MIP images and DSA images at the same plane. Correlation between DE CTA and DSA was determined by cross tabulation. Accuracies for stenosis detection and grading were calculated. Stenosis could be evaluated in all vessels by DE CTA after applying DE hard plaque removal. In contrast, conventional CTA failed to show stenosis in 13 out of 18 vessels due to overlapping hard plaque. Good correlation between DE plaque removal images and DSA images was observed (r (2) = 0.9504) for stenosis grading. Sensitivity and specificity to detect hemodynamically relevant (>70%) stenosis was 100% and 92%, respectively. Dual-energy head bone and hard plaque removal is a promising tool for the evaluation of densely calcified carotid stenosis.
The X-map is a powerful tool to supplement a simulated standard CT and characterize acute ischemic lesions. However, the X-map cannot replace a simulated standard CT to diagnose acute cerebral infarction.
MRI is an effective modality for diagnosing EP with a high detection rate of extrauterine GSs. The combination of direct and indirect signs is useful for establishing the correct diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.