Isomaltodextrin (IMD), a highly branched α-glucan, is a type of resistant starch. Earlier studies have indicated that polysaccharides could prevent inflammation and can be effective in reducing the complications of chronic gastrointestinal diseases such as inflammatory bowel disease (IBD). Therefore, the aim of the present study was to evaluate the anti-inflammatory effect of IMD in dextran sodium sulfate (DSS)-induced colitis in a mouse model. IMD (0.5, 1.0, 2.5, and 5.0% (w/v)) was given orally for 23 days to female Balb/c mice, and then 5% DSS was administered to induce colitis (from day 15 onward to the end of the trial). IMD could not prevent DSS-induced weight loss or colon shortening. However, IMD could reduce inflammatory cytokines, TNF-α and IL-6, in the colon. Gene expression indicated the tendency of IMD to suppress pro-inflammatory cytokines IL-1β, MCP-1, and IL-17 and to increase an anti-inflammatory cytokine, IL-10. Further study revealed that the anti-inflammatory action of IMD mediates through inhibition of the expression of Toll-like receptor-4.
Ondansetron (10 mgkg, p.0.) and granisetron (1 mgkg, p.0.) also inhibited the stress-accelerated colonic transit, but azasetron was more effective than these two drugs. Atropine methylbromide (0.1 mg/kg, s .~) and tetrodotoxin (0.01 mg/kg, s.c.) inhibited the accelerated colonic transit under stress conditions, but methysergide (10 mgkg, s.c.), SDZ205-557 (10 mg/kg, s.c.), domperidone (30 mgkg, P.o.), trimebutine (300 mgkg, P.o.), and metoclopramide (30 mgkg, p.0.) did not. Azasetron (10 pg) administered intracerebroventricularly did not inhibit the stressinduced acceleration. These results suggest that endogenous 5-HT which is released through stress accelerates the colonic transit via the 5-HT3 receptors and finally a cholinergic mechanism. It is considered that azasetron inhibits colonic transit partic- ularly under stress conditions through the blockade of the peripheral 5-HT3 receptors. Azasetron may improve bowel function in strewrelated colonic dysfunction like irritable bowel syndrome.
Thermal striping tests in mixing tees with hot and cold water were conducted for three types of flow conjunctions in order to establish an evaluation method for high-cycle thermal fatigue of piping systems. Two kinds of examinations were planned. The preliminary tests were flow visualization tests carried out using acrylic pipes to obtain flow pattern characteristics and flow temperature fluctuations. The main tests were temperature fluctuation measurement tests carried out using metal pipes to evaluate the unsteady heat transfer coefficient based on measured temperature fluctuations of fluid and pipe wall. This paper reports visualization test results. The flow patterns were visualized by injection of methylene blue and compared with flow analysis results by the k-ε turbulence model. Temperature fluctuations of fluid 3mm from the inner pipe wall were measured with C-A thermocouples. Fundamental features such as locations with a large fluctuating temperature, the fluctuating temperature amplitude and its frequency were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.