This Letter focuses on the discovery of a transparent conducting oxide (TCO), anatase Ti1−xNbxO2 films with x=0.002–0.2. The resistivity of films with x⩾0.03 is 2–3×10−4Ωcm at room temperature. The carrier density of Ti1−xNbxO2 can be controlled in a range of 1×1019to2×1021cm−3. The internal transmittance for films with x⩽0.03 (40nm thickness) is about 97% in the visible light region. The transport and optical parameters are comparable to those of typical TCOs, such as In2−xSnxO3 and ZnO.
We have investigated electronic band structure of a transparent conducting oxide, Nb-doped anatase TiO2 (TNO), by means of first-principles band calculations and photoemission measurements. The band calculations revealed that Nb 4d orbitals are strongly hybridized with Ti 3d ones to form a d-nature conduction band, without impurity states in the in-gap region, resulting in high carrier density exceeding 1021 cm-3 and excellent optical transparency in the visible region. Furthermore, we confirmed that the results of valence band and core-level photoemission measurements are consistent with prediction by the present band calculations.
We present electrical transport and optical properties of Ta-doped TiO2 epitaxial thin films with varying Ta concentration grown by the pulsed laser deposition method. The Ti0.95Ta0.05O2 film exhibited a resistivity of 2.5×10-4 Ω cm at room temperature, and an internal transmittance of 95% in the visible light region. These values are comparable to those of a widely used transparent conducting oxide (TCO), indium tin oxide. Furthermore, this new material falls into a new category of TCOs that utilizes d electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.