Visually induced illusions of self-motion are often referred to as vection. This article developed and tested a model of responding to visually induced vection. We first constructed a mathematical model based on well-documented characteristics of vection and human behavioral responses to this illusion. We then conducted 10,000 virtual trial simulations using this Oscillating Potential Vection Model (OPVM). OPVM was used to generate simulated vection onset, duration, and magnitude responses for each of these trials. Finally, we compared the properties of OPVM’s simulated vection responses with real responses obtained in seven different laboratory-based vection experiments. The OPVM output was found to compare favorably with the empirically obtained vection data.
Visual inputs can distort auditory perception, and accurate auditory processing requires the ability to detect and ignore visual input that is simultaneous and incongruent with auditory information. However, the neural basis of this auditory selection from audiovisual information is unknown, whereas integration process of audiovisual inputs is intensively researched. Here, we tested the hypothesis that the inferior frontal gyrus (IFG) and superior temporal sulcus (STS) are involved in top-down and bottom-up processing, respectively, of target auditory information from audiovisual inputs. We recorded high gamma activity (HGA), which is associated with neuronal firing in local brain regions, using electrocorticography while patients with epilepsy judged the syllable spoken by a voice while looking at a voice-congruent or -incongruent lip movement from the speaker. The STS exhibited stronger HGA if the patient was presented with information of large audiovisual incongruence than of small incongruence, especially if the auditory information was correctly identified. On the other hand, the IFG exhibited stronger HGA in trials with small audiovisual incongruence when patients correctly perceived the auditory information than when patients incorrectly perceived the auditory information due to the mismatched visual information. These results indicate that the IFG and STS have dissociated roles in selective auditory processing, and suggest that the neural basis of selective auditory processing changes dynamically in accordance with the degree of incongruity between auditory and visual information.
We examined the hypothesis that the conscious self-correction process in the models of lay citizens' determination of punishment could inhibit the retributive goal that was their instinctive default objective. In two experiments, we tested whether an instruction to ignore the retributive goal could eliminate the influence of information about the seriousness of the crime on the severity of the punishment. If the retributive goal can be inhibited, the instruction would eliminate the information's influence on the punishment's severity. However, the persistence of the information's influence would mean that the retributive goal is not inhibited. The result showed that the instruction eliminated the influence of information that decreased the crime's seriousness but could barely reduce the influence of information that increased the seriousness. We concluded that self-correction cannot inhibit the retributive goal when its inhibition would lead to a more lenient punishment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.