The immature brain may be particularly vulnerable to injury during critical periods of development. To address the biologic basis for this vulnerability, mice were subjected to traumatic brain injury at postnatal day 21, a time point that approximates that of the toddler-aged child. After motor and cognitive testing at either 2 weeks (juveniles) or 3 months (adults) after injury, animals were euthanized and the brains prepared for quantitative histologic assessment. Brain-injured mice exhibited hyperactivity and age-dependent anxiolysis. Cortical lesion volume and subcortical neuronal loss were greater in brain-injured adults than in juveniles. Importantly, cognitive decline was delayed in onset and coincided with loss of neurons in the hippocampus. Our findings demonstrate that trauma to the developing brain results in a prolonged period of pathogenesis in both cortical and subcortical structures. Behavioral changes are a likely consequence of regional-specific neuronal degeneration.
Children younger than 4 years old have worse outcome after traumatic brain injury (TBI) compared to older children and adults. This increased susceptibility may in part be due to differences in the response to oxidative stress. We hypothesized that the immature brain does not have an adequate compensatory response to injury from oxidative stress. To begin to address this hypothesis, we first compared the general dimensions and water content in postnatal day 21 (P21) and adult murine brain in the naive state as well as after injury (edema). We examined glutathione peroxidase (GPx ) activity in cortical and subcortical regions in P21 and adult murine brain following a controlled cortical impact. Brain dimensions including areas of the mantle and hemispheres were similar in each of these groups. The thickness of the cortical mantle was significantly greater in the immature brain as compared to the mature brain (p = 0.01, respectively). Brain edema was assessed through changes in water content, and the response to oxidative challenge was identified by changes in GPx activity. The P21 brain was similar in vulnerability to posttraumatic brain edema when compared to adult. GPx activity in the adult brain was increased within 24 h post-injury in the cortex, thalamus and hippocampus (ANOVA, p < 0.05), whereas there was no compensatory increase in GPx activity in P21 brain, although baseline levels had reached adult levels developmentally. These findings support our hypothesis and illuminate the important role of oxidative stress after TBI in the immature brain that warrants further study.
Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using differential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of non-flagellar based gliding motility, and have a strikingly large number of sensory and response regulator genes. We propose that the KSB3 filaments are highly sensitive to their surroundings and that cellular processes, including those causing bulking, are controlled by external stimuli. The obtained genomes lay the foundation for a more detailed understanding of environmental cues used by KSB3 filaments, which may lead to more robust treatment options to prevent bulking.
A comprehensive survey of bacterial and archaeal community structures within granular sludges taken from twelve different types of full-scale, food-processing wastewater-treating, upflow anaerobic sludge blanket (UASB) reactors was performed with a 16S rRNA gene-based clone library method. In total, 1,282 bacterial 16S rRNA gene clones and 722 archaeal clones were analyzed, and their identities were determined by phylogenetic analyses. Overall, clones belonging to the bacterial phyla Proteobacteria (the class Deltaproteobacteria in particular), Firmicutes, Spirochaetes, and Bacteroidetes were observed in abundance within the bacterial clone libraries examined, indicating common bacterial denominators in such treatment systems. Within the domain Archaea, clones affiliated with the classes Methanomicrobia and Methanobacteria were found to be abundant in the archaeal libraries. In relation to features of reactor performance (such as chemical oxygen demand removal, fatty acid accumulation, and sludge bulking), possible representative phylotypes likely to be associated with process failures, such as sludge bulking and the accumulation of propionate, were found in comparative analyses of the distribution of phylotypes in the sludge libraries.Key words: 16S rRNA gene clone library, granular sludge, microbial community, UASB Anaerobic digestion technology has been used effectively to treat organic matter in waste streams. To date, various anaerobic processes for treating wastewater have been developed (1,29,32). One of the most established technologies in this field is the upflow anaerobic sludge blanket (UASB) system, because of its ability to treat a broad range of organic waste streams at high loading rates (32,40,45,47). The most characteristic phenomenon in this process is sludge granulation, i.e., granular-shaped sludge is spontaneously formed within the system. Granular sludge generally has superior settling characteristics. Thus, the stable and efficient operation of granular sludge-based systems is primarily dependent on the growth and maintenance of granular sludge. Granular sludge is also characterized as a spherical biofilm, possessing all the trophic groups of anaerobes necessary for the complete mineralization of organic matter. Owing to its characteristic internal structure, granular sludge is also important for the efficient biotransformation of organic matter into methane (48).Understanding the ecology of anaerobes involved in granular sludge is essential to the control of these bioreactors. The microbiology of granular sludges in UASB bioreactors has been studied using culture-dependent and molecularbased approaches, particularly those targeting 16S rRNA genes (38,45,47). So far, molecular-based community analyses have been performed for UASB granular sludges treating wastewater from a paper factory (41), a terephthalatemanufacturing plant (53), a beer brewery (13), and sucrose/ propionate/acetate-based artificial wastewater (44). In addition, the molecular characterization of UASB granules targeting s...
The two types of intervention protocol well reflected the treatment intention and expected outcomes. Further, large-scale cohort studies are promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.