It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.
Understanding the mechanisms of how colloidal solution properties and drying processes result in dry colloidal structures is essential for industrial applications such as paint, ceramics, and electrodes. In this study, we develop a computational method to simulate the drying process of colloidal suspensions containing solid particles and polymers. The method consists of a solvent evaporation model, a fluid particle dynamics method, and a two-phase lattice Boltzmann method. We determine that a high-viscosity solvent, small surface tension, and a high evaporation rate of the solvent lead to a structure with dispersed particles and interconnected pores. When these conditions are not present, the particles agglomerate and the pores are disconnected.
The lattice Boltzmann method is applied to the investigations of the diffusivity and the permeability in the gas diffusion layer (GDL) of the polymer electrolyte fuel cell (PEFC). The effects of the configuration of water droplets, the porosity of the GDL, the viscosity ratio of water to air, and the surface wettability of the GDL are investigated. From the simulations under the PEFC operating conditions, it is found that the heterogeneous water network and the high porosity improve the diffusivity and the permeability, and the hydrophobic surface decreases the permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.