In the ischemic brain, reperfusion with tissue plasminogen activator (tPA) sometimes causes catastrophic hemorrhagic transformation (HT); however, the mechanism remains elusive. Here, we show that the basement membrane, and not the endothelial cells, is vulnerable to ischemic/reperfusion injury with tPA treatment. We treated a spontaneously hypertensive rat model of middle cerebral artery occlusion (MCAO) with vehicle alone, tPA alone, or a free radical scavenger, edaravone, plus tPA. Light and electron microscopic analyses of each microvascular component revealed that the basement membrane disintegrated and became detached from the astrocyte endfeet in tPA-treated animals that showed HT. On the other hand, edaravone prevented the dissociation of the neurovascular unit, dramatically decreased the HT, and improved the neurologic score and survival rate of the tPA-treated rats. These results suggest that the basement membrane that underlies the endothelial cells is a key structure for maintaining the integrity of the neurovascular unit, and a free-radical scavenger can be a viable agent for inhibiting tPA-induced HT.
Background and Purpose—
Exosomes play a pivotal role in neurogenesis. In the peri-infarct area after stroke, axons begin to regenerate but are inhibited by astrocyte scar formation. The direct effect and underlying molecular mechanisms of astrocyte-derived exosomes on axonal outgrowth after ischemia are not known.
Methods—
Using a semaphorin 3A (Sema3A) inhibitor, we explored neuronal signaling during axonal outgrowth after ischemia in rats subjected to middle cerebral artery occlusion and in cultured cortical neurons challenged with oxygen-glucose deprivation. Furthermore, we assessed whether this inhibitor suppressed astrocyte activation and regulated astrocyte-derived exosomes to enhance axonal outgrowth after ischemia.
Results—
In rats subjected to middle cerebral artery occlusion, we administered a Sema3A inhibitor into the peri-infarct area from 7 to 21 days after occlusion. We found that phosphorylated high-molecular weight neurofilament-immunoreactive axons were increased, glial fibrillary acidic protein–immunoreactive astrocytes were decreased, and functional recovery was promoted at 28 days after middle cerebral artery occlusion. In cultured neurons, the Sema3A inhibitor decreased Rho family GTPase 1, increased R-Ras, which phosphorylates Akt and glycogen synthase kinase 3β (GSK-3β), selectively increased phosphorylated GSK-3β in axons, and thereby enhanced phosphorylated high-molecular weight neurofilament-immunoreactive axons after oxygen-glucose deprivation. In cultured astrocytes, the Sema3A inhibitor suppressed activation of astrocytes induced by oxygen-glucose deprivation. Exosomes secreted from ischemic astrocytes treated with the Sema3A inhibitor further promoted axonal elongation and increased prostaglandin D
2
synthase expression on microarray analysis. GSK-3β
+
and prostaglandin D
2
synthase
+
neurons were robustly increased after treatment with the Sema3A inhibitor in the peri-infarct area.
Conclusions—
Neuronal Rho family GTPase 1/R-Ras/Akt/GSK-3β signaling, axonal GSK-3β expression, and astrocyte-derived exosomes with prostaglandin D
2
synthase expression contribute to axonal outgrowth and functional recovery after stroke.
As oligodendrocyte precursor cells (OPCs) are vulnerable to ischemia, their differentiation to oligodendrocytes (OLG) is impaired in chronic cerebral hypoperfusion. Astrocyte–OLG interaction is important for white matter homeostasis. Recently, reactive astrocytes were separated into two types, A1 (cytotoxic) and A2 (neurotrophic). However, their role in prolonged cerebral hypoperfusion remains unclear. We analyzed the effects of interaction between A1–A2 astrocytes and OPC–OLG under hypoperfusion, focusing on mitochondrial migration. As an in vivo model, chronic hypoperfusion model mice were created by bilateral common carotid artery stenosis (BCAS) using microcoils. As a matching in vitro study, rat primary cells were cocultured with a nonlethal concentration of CoCl2. At 28 days after hypoperfusion, the number of OPC and astrocytes increased, whereas that of OLG decreased. Increased astrocytes were mainly A1‐like astrocytes; however, the number of A2‐like type decreased. In cell culture, OPC differentiation was interrupted under mimic chronic ischemia, but improved after astrocyte‐conditioned medium (ACM) was added. However, injured‐ACM was unable to improve OPC maturation. Incubation with CoCl2 changed astrocytes from A2‐like to A1‐like, and mitochondrial migration was also reduced. A Trkβ agonist was able to maintain astrocytes from A1‐like to A2‐like even under hyperperfused conditions, and aided in OPC maturation and memory impairment via mitochondrial migration and drug effects in cell culture study and BCAS model. The reduction of A1‐like astrocytes protects against white matter injury. Trkβ agonists may play an important role in the impairment under chronic ischemic conditions. Mitochondrial migration may be a broad therapeutic strategy for cerebrovascular diseases.Main pointsProlonged cerebral hypoperfusion leads to impaired oligodendrocyte (OLG) maturation and increased numbers of A1 astrocytes. Mitochondria migration maintained A2 astrocyte morphology, mature OLG, and myelinated white matter in vivo/vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.