The substituent effect on the g-tensor of polycrystalline 2,6-di-tert-butyl phenoxyl radical derivatives diluted in diamagnetic crystals was investigated using multifrequency ESR spectroscopy and DFT calculations. It was revealed that the g-tensors of the series of phenoxyl radical derivatives essentially have an orthorhombic symmetry. For some radicals, the hyperfine-splitting tensors from the para groups were resolved. The interpretations and the assignments of the spin-Hamiltonian parameters were confirmed with computer simulations in all bands. The DFT-calculated g-tensors were consistent with the experimental g-tensors. Furthermore, the shifts Delta(g) from the free electron ge were analyzed in details as the sum of three contributions. The spin-orbit interactions were found to be the dominant factor with regard to the Delta(g). With a focus on the s-o term, thus, the relationship of the g-values and the electronic excited states was explained by visualizing the molecular orbitals of the phenoxyl radical derivatives. This study thus showed the very significant potential of the combination of a multi-frequency ESR approach and a DFT calculation to advanced ESR analysis, particularly, g-tensor analysis, even for a powder-sample radical.
Multifrequency (X-, Q-, and W-band) electron spin resonance (ESR) spectroscopy has been used to characterize the phenoxyl radical produced from alpha-(3,5-di-tert-butyl-4-hydroxyphenyl)-N-tert-butylnitrone, which is a new spin-trapping reagent. The X-band measurement did not resolve the powder-pattern ESR spectrum. Because of its higher resolution with g value, the Q-band ESR study revealed that the g factor has an axial-like symmetry and that the observed hyperfine structure in the Z-direction is caused by the nitrogen nucleus at the para-position. Furthermore, the results of the W-band ESR experiment more clearly distinguished the perpendicular components from the parallel component, resolving the perpendicular components into x and y components. The X-band powder spectrum was similar to the X-band ESR spectrum of the radical in a frozen solution of toluene. The computer simulation spectra performed using the obtained parameters fitted the experimental spectra well. A comparison of the amplitude of g( perpendicular)(gx, gy) with that of gz showed that the unpaired electron is delocalized over the pi-conjugated framework. Considering the hyperfine coupling constant, it was concluded that about 16% of the unpaired electron distributed over the nitrogen nucleus at the para-position. This study thus showed the significant potential of a multifrequency ESR approach to a powder sample radical in terms of its high resolution with g value.
We report on the oscillation behavior of spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer as a function of bias field angle. The measurement results show that both emission power and oscillation frequency are strongly dependent on the bias field angle. When the bias field was tilted by only a few degrees away from the axis normal to the film toward either parallel or antiparallel configuration, the power increased by about 1.5 times or decreased by two orders of magnitude, and the peak frequency varied by about ±1 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.