Background: In the Philippines, malaria morbidity and mortality have decreased since the 1990s by effective malaria control. Several epidemiological surveys have been performed in the country, but the characteristics of the Plasmodium falciparum populations are not yet fully understood. In this study, the genetic structure of P. falciparum populations in the Philippines was examined.
Abstract. Previous intervention studies have shown that the most effective agents used in the treatment of malaria were isolated from natural sources. Plants consumed by non-human primates serve as potential drug sources for human disease management due to the similarities in anatomy, physiology and disease characteristics. The present study investigated the antiplasmodial properties of the primate-consumed plant, Schima wallichii (S. wallichii) Korth. (family Theaceae), which has already been reported to have several biological activities. The ethanol extract of S. wallichii was fractionated based on polarity using n-hexane, ethyl acetate and water. The antiplasmodial activity was tested in vitro against chloroquine-resistant Plasmodium falciparum (P. falciparum) at 100 µg/ml for 72 h. The major compound of the most active ethyl acetate fraction was subsequently isolated using column chromatography and identified by nuclear magnetic resonance. The characterized compound was also tested against chloroquine-resistant P. falciparum in culture to evaluate its antiplasmodial activity. The ethanol extract of S. wallichii at 100 µg/ml exhibited a significant parasite shrinkage after 24 h of treatment. The ethyl acetate fraction at 100 µg/ml was the most active fraction against chloroquine-resistant P. falciparum. Based on the structural characterization, the major compound isolated from the ethyl acetate fraction was kaempferol-3-O-rhamnoside, which showed promising antiplasmodial activity against chloroquine-resistant P. falciparum with an IC 50 of 106 µM after 24 h of treatment. The present study has provided a basis for the further investigation of kaempferol-3-O-rhamnoside as an active compound for potential antimalarial therapeutics.
VAMP7 or tetanus neurotoxin-insensitive vesicleassociated membrane protein (TI-VAMP) has been proposed to regulate apical transport in polarized epithelial cells, axonal transport in neurons and lysosomal exocytosis. To investigate the function of VAMP7 in vivo, we generated VAMP7 knockout mice. Here, we show that VAMP7 knockout mice are indistinguishable from control mice and display a similar localization of apical proteins in the kidney and small intestine and a similar localization of axonal proteins in the nervous system. Neurite outgrowth of cultured mutant hippocampal neurons was reduced in mutant neurons. However, lysosomal exocytosis was not affected in mutant fibroblasts. Our results show that VAMP7 is required in neurons to extend axons to the full extent. However, VAMP7 does not seem to be required for epithelial cell polarity and lysosomal exocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.