Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose conversion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 microM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3,6-dimethylamino-derivative (acridine orange) was less than 1 microM while the ED50 values of the other acridines were greater than 80 microM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, alpha-tocopherol or beta-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast. This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes.
The clinically useful optimum dose of omoconazole nitrate, a topical antifungal agent, has been examined by analysing the percutaneous pharmacokinetics of the drug to assess its pharmacological activity in an in-vivo study. Creams containing omoconazole nitrate were prepared on a pilot basis. The therapeutic effect of the omoconazole nitrate creams was examined in an in-vivo pharmacological dermatophytosis infection model in guinea-pigs. Creams containing 0.25% or higher concentrations of omoconazole nitrate resulted in significant inhibition compared with no treatment and with vehicle-treated controls. In the mycological examination no growth of dermatophytes was observed for creams containing 1% or higher concentrations. In an in-vitro hairless mouse skin-permeability test a non-linear least squares program based on a fast inverse Laplace transform algorithm was used to calculate the partition and diffusion parameters of omoconazole nitrate in the stratum corneum and viable epidermis. The time-course of drug concentrations in the skin of the guinea-pig, estimated on the basis of these parameters, led to predictions that percutaneous drug concentrations on the guinea-pig would require 10 or more days to reach equilibrium in the skin; that drug concentrations in the corneum-viable epidermis border, where dermatophytes are considered to grow, would exceed the minimum effective concentration when 0.1% higher concentration creams were used; and that for binding to keratin drug concentrations would reach the practical minimum effective concentration when creams containing 0.5% or more omoconazole nitrate were used. These results show that partition and diffusion parameters obtained from in-vitro skin permeation studies can be used to predict in-vivo percutaneous pharmacokinetics and to estimate therapeutically effective concentrations.
The therapeutic efficacy of omoconazole nitrate was investigated in an experimental tinea pedis model produced by topical inoculation with Trichophyton mentagrophytes in guinea-pigs, which is pathologically similar to naturally infected tinea pedis in humans. Treatment with omoconazole nitrate cream was started on week 2 postinfection and continued for 3 or 4 weeks. Once-a-day application of 1% omoconazole nitrate to the site of infection exhibited an excellent therapeutic efficacy, and was superior to 1% bifonazole cream in culture result. This result suggests that omoconazole nitrate has a potential usefulness for the treatment of tinea pedis in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.