InGaN multi-quantum-well (MQW) structure laser diodes (LDs) fabricated from III-V nitride materials were grown by metalorganic chemical vapor deposition on sapphire substrates. The mirror facet for a laser cavity was formed by etching of III-V nitride films without cleaving. As an active layer, the InGaN MQW structure was used. The InGaN MQW LDs produced 215 mW at a forward current of 2.3 A, with a sharp peak of light output at 417 nm that had a full width at half-maximum of 1.6 nm under the pulsed current injection at room temperature. The laser threshold current density was 4 kA/cm2. The emission wavelength is the shortest one ever generated by a semiconductor laser diode.
InGaN multi-quantum-well-structure laser diodes (LDs) grown on GaN substrates were demonstrated. The LDs showed a small thermal resistance of 30 °C/W and a lifetime longer than 780 h despite a large threshold current density of 7 kA/cm2. In contrast, the LDs grown on a sapphire substrate exhibited a high thermal resistance of 60 °C/W and a short lifetime of 200 h under room-temperature continuous-wave operation.
Continuous-wave (cw) operation of InGaN multi-quantum-well structure laser diodes (LDs) was demonstrated at room temperature (RT). The threshold current and voltage of the LD were 130 mA and 8 V, respectively. The threshold carrier density was 9 kA/cm2. The lifetime of the LDs under RT cw operation was 1 s due to large heat generation. Mode hopping of the emission wavelength of the LDs was observed. The average wavelength drift due to temperature increase was 0.066 nm/K between 20 and 70 °C, because of the temperature dependence of the gain profile due to band-gap narrowing of the InGaN active layer.
InGaN multi-quantum-well-structure laser diodes with Al0.14Ga0.86N/GaN modulation doped strained-layer superlattice cladding layers grown on an epitaxially laterally overgrown GaN substrate were demonstrated to have an estimated lifetime of more than 10000 h under continuous-wave operation at 20° C. Under operation at a high temperature of 50° C, the lifetime was longer than 1000 h. With the operating current increasing to above the threshold, a self-pulsation with a high frequency of 3.5 GHz was observed. The carrier lifetime was estimated to be 1.8 ns from the pulsed modulation of the LDs.
Using metal-clad (or plasmonic) waveguide structures in semiconductor lasers carries a promise of reduced size, threshold, and power consumption. This promise is put to a rigorous theoretical test, that takes into account increased waveguide loss, Auger recombination, and Purcell enhancement of spontaneous recombination. The conclusion is that purported benefits of metal waveguides are small to nonexistent for all the band-to-band and intersubband lasers operating from UV to Mid-IR range, with a prominent exception of far-IR and THz quantum cascade lasers. For these devices, however, metal waveguides already represent the state of the art, and the guiding mechanism in them has far more in common with a ubiquitous transmission line than with plasmonics.Cascade 250.5403 Plasmonics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.