Searching for the integrable structures of supersymmetric gauge theories and
topological strings, we study melting crystal, which is known as random plane
partition, from the viewpoint of integrable systems. We show that a series of
partition functions of melting crystals gives rise to a tau function of the
one-dimensional Toda hierarchy, where the models are defined by adding suitable
potentials, endowed with a series of coupling constants, to the standard
statistical weight. These potentials can be converted to a commutative
sub-algebra of quantum torus Lie algebra. This perspective reveals a remarkable
connection between random plane partition and quantum torus Lie algebra, and
substantially enables to prove the statement. Based on the result, we briefly
argue the integrable structures of five-dimensional $\mathcal{N}=1$
supersymmetric gauge theories and $A$-model topological strings. The
aforementioned potentials correspond to gauge theory observables analogous to
the Wilson loops, and thereby the partition functions are translated in the
gauge theory to generating functions of their correlators. In topological
strings, we particularly comment on a possibility of topology change caused by
condensation of these observables, giving a simple example.Comment: Final version to be published in Commun. Math. Phys. . A new section
is added and devoted to Conclusion and discussion, where, in particular, a
possible relation with the generating function of the absolute Gromov-Witten
invariants on CP^1 is commented. Two references are added. Typos are
corrected. 32 pages. 4 figure
The exact solution of N = 2 supersymmetric SU (N ) Yang-Mills theory is studied in the framework of the Whitham hierarchies. The solution is identified with a homogeneous solution of a Whitham hierarchy. This integrable hierarchy (Whitham-Toda hierarchy) describes modulation of a quasi-periodic solution of the (generalized) Toda lattice hierarchy associated with the hyperelliptic curves over the quantum moduli space. The relation between the holomorphic pre-potential of the low energy effective action and the τ function of the (generalized) Toda lattice hierarchy is also clarified. †
Five-dimensional N = 1 supersymmetric Yang-Mills theories are investigated from the viewpoint of random plane partitions. It is shown that random plane partitions are factorizable as q-deformed random partitions so that they admit the interpretations as five-dimensional Yang-Mills and as topological string amplitudes. In particular, they lead to the exact partition functions of five-dimensional N = 1 supersymmetric Yang-Mills with the Chern-Simons terms. We further show that some specific partitions, which we call the ground partitions, describe the perturbative regime of the gauge theories. We also argue their role in string theory. The gauge instantons give the deformation of the ground partition.
The quantum and classical aspects of a deformed c = 1 matrix model proposed by Jevicki and Yoneya are studied. String equations are formulated in the framework of the Toda lattice hierarchy. The Whittaker functions now play the role of generalized Airy functions in c < 1 strings. This matrix model has two distinct parameters. Identification of the string coupling constant is thereby not unique, and leads to several different perturbative interpretations of this model as a string theory. Two such possible interpretations are examined. In both cases, the classical limit of the string equations, which turns out to give a formal solution of Polchinski's scattering equations, shows that the classical scattering amplitudes of massless tachyons are insensitive to deformations of the parameters in the matrix model. †
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.