The Zizyphus jujuba fruit has been used as a traditional Chinese medicinal herb and considered to affect various physiological functions in the body for thousands of years. However, its anti-cancer activity and mechanism of action remain to be elucidated. We investigated the anti-cancer activity of Zizyphus jujuba Mill and its underlining mechanisms of action in human hepatoma cells (HepG2) and found that the extract of Z. jujuba decreased the viability of the cells. Further extraction of the initial Z. jujuba extract with organic solvents revealed that the chloroform fraction (CHCl(3)-F) was the most effective. Interestingly, the CHCl(3)-F induced not only apoptosis but also G1 arrest at a low concentration (100 mug/ml) and G2/M arrest at a higher concentration (200 mug/ml) by cell cycle assay. Apoptosis, an increase in intracellular ROS (reactive oxygen species) level, a decline of mitochondrial membrane potential at low Z. jujuba concentrations, and a ROS-independent mitochondrial dysfunction pathway at high concentrations were all observed. CHCl(3)-F-induced G1 arrest in HepG2 cells was associated with an increase in hypohosphorylation of Rb and p27(Kip1), and a decrease of phosphorylated Rb. However, CHCl(3)-F-induced G2/M arrest in HepG2 cells correlated with a decrease of the p27(Kip1) levels and generation of the phosphorylation of p27(Kip1), however the hypohosphorylation of Rb protein remained. Collectively, our findings suggest that the CHCl(3)-F extract of Z. jujuba extract induced a concentration dependent effect on apoptosis and a differential cell cycle arrest in HepG2 cells.
Gamma-aminobutyric acid (GABA) is considered to be a multifunctional molecule with various physiological effects throughout the body. It is also evident that the liver contains GABA and its transporter. However, the functions of GABA in liver have not been well documented. In this study, the cytoprotective effect of GABA against ethanol-induced hepatotoxicity was evaluated in primary cultured rat hepatocytes. Addition of ethanol induced decrease of cell viability in a dose-dependent manner. However, treatment with GABA resulted in a dose-dependent recovery from ethanol (150 mM)-induced cytotoxicity.GABA reversed the ethanol-induced decrease in intracellular polyamine levels. Furthermore, the addition of polyamines also reversed the ethanol-induced decrease of cell viability. These results suggest that GABA is protective against the cytotoxicity of ethanol in isolated rat hepatocytes and this effect may be modulated by the maintenance of intracellular polyamine levels.
The first total synthesis of natural, unsymmetrical 2',3'-diacyloxy-p-terphenyls, thelephantin O (1) and terrestrins C and D (2 and 3, respectively), was achieved via a practical route which was also applicable to the synthesis of the symmetrical diesters vialinin A/terrestrin A (4) and terrestrin B (5). Compounds 1-5 exhibited cytotoxicity against cancer cells (HepG2 and Caco2) with IC(50) values of 13.6-26.7 μmol/L.
Thelephora aurantiotincta is an edible mushroom belonging to the genus Thelephora; it grows in symbiosis with pine trees. Recently, phytochemical investigations have revealed that the genus Thelephora is an abundant source of p-terphenyl derivatives. However, their bioactivity has not yet been well characterized. In screening for natural materials with anticancer activity, a T. aurantiotincta ethanol extract (TAE) was found to decrease cell viability in human hepatocellular carcinoma cells (HepG2). In this study, a new p-terphenyl derivative, thelephantin O, and a known compound, vialinin A, were isolated as the principal bioactive components of TAE. These compounds decreased cell viability in HepG2 and human colonic carcinoma cells (Caco2), but not in noncancerous human hepatocytes. This is the first report of the isolation from T. aurantiotincta of selective cytotoxic agents against cancer cells.
Obesity, the leading metabolic disease in the world, is a serious health problem in industrialized countries. We investigated the anti-obesity effect of Blumea balsamifera extract on adipocyte differentiation of 3T3-L1 preadipocytes and anti-obesity effect of 3T3-L1 adipocytes. We found that treatment with an extract of Blumea balsamifera suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity without affecting cell viability in 3T3-L1 preadipocytes and adipocytes. Furthermore, Blumea balsamifera extract brought significant attenuation of expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor (PPAR)gamma, CCAAT element binding protein (C/EBPs) and leptin, however, induced up-regulation of adiponectin at the protein level in 3T3-L1 preadipocytes and adipocytes. These results suggest that Blumea balsamifera extract may block adipogenesis, at least in part, by decreasing key adipogenic transcription factors in 3T3-L1 preadipocytes and may have antiatherogenic, anti-inflammatory, and antidiabetic effects through up-regulation of adiponectin in 3T3-L1 adipocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.