Structures of x ZnO–(1-x) TeO2 glasses (x=0.1, 0.2, 0.3) were investigated by means of neutron diffraction and molecular dynamics. Modified Keating three-body potential and imaginary negative point charge were applied to the simulation, which successfully represented complex structure units in tellurite glasses. It was concluded that TeO3+1 was a dominant component in the network structure of the zinc tellurite glasses. The fraction of the TeO3+1 unit was almost independent of the amount of ZnO. Zinc atoms are considered to play a role in network formation in the glasses, which was estimated on the basis of the coordination state of tellurium.
We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by Jones calculus. An approximate method for calculating the optical path difference using the average stress along the wave normal is also proposed and the relation between the Jones calculus and the approximate method is discussed. It is found that the result of the approximate method agrees very well with that of the Jones calculus. The distribution of the optical path difference in the annealed ingot obtained from the present calculation agrees reasonably well with that of the experiment. Its calculated value also agrees reasonably well with that of the experiment, when a stress-free temperature is adequately selected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.