Recently we have presented proximity capacitance CMOS image sensors with 0.1 aF detection accuracy with advanced noise cancelling [18][19][20][21] . In this paper, the proximity capacitance CMOS image sensor technology with high detection accuracy, high spatial resolution and real-time detection and its applications are presented.The proposed circuit architecture, working principles, structure and its applications will be described in detail in the following sections.
This paper presents newly developed two high-precision CMOS proximity capacitance image sensors: Chip A with 12 μm pitch pixels with a large detection area of 1.68 cm2; Chip B with 2.8 μm pitch 1.8 M pixels for a higher resolution. Both fabricated chips achieved a capacitance detection precision of less than 100 zF (10−19 F) at an input voltage of 20 V and less than 10 zF (10−20 F) at 300 V due to the noise cancelling technique. Furthermore, by using multiple input pulse amplitudes, a capacitance detection dynamic range of up to 123 dB was achieved. The spatial resolution improvement was confirmed by the experimentally obtained modulation transfer function for Chip B with various line and space pattens. The examples of capacitance imaging using the fabricated chips were also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.