We report a microwave heating system with a carbon heating tube (CHT) which was made by a 4-mm diameter quartz tube filled with carbon particles and Ar gas at 1400 Pa. A 60-mm-long CHT was set in a cavity in which 2.45-GHz microwave was introduced. Via nearly complete absorption of a microwave power of 200 W by carbon in the CHT during multi-reflection of the microwave in the cavity, the CHT was effectively heated to 1279 • C at 33 s after the microwave initiation, which was observed by the radiationtype thermometer. Moreover, the control of the CHT temperature was demonstrated with a home-made proportional-integral-differential feedback circuit which regulated the magnetron power source using a signal of the thermometer. The control of temperature at 1100 • C was successfully realized. Crystallization of a 58-nm-thick amorphous silicon thin film formed on the glass substrate was demonstrated by mechanically moving the silicon sample just below the heated CHT. A high crystalline volume ratio of 0.92 was achieved. Furthermore, heating of 500-µm-thick-n-type silicon substrate implanted with 1.0 × 10 15 cm −2 phosphorus and boron atoms with the CHT resulted in activation of the doped regions. Rectified diode characteristics were achieved. INDEX TERMS Electromagnetic interference, heat treatment, low-microwave power electronics, PID temperature control, silicon.
We report a microwave heating system with a carbon heating tube (CHT) made by a 4-mm diameter quartz tube filled carbon particles and Ar gas at 1400 Pa. 2.45-GHz microwave at 200 W was introduced to a 300-dimameter metal cavity, in which 60-mm-long CHT was set at the central position. The numerical simulation with a finite element moment method resulted in the standing wave of the electric field caused by three dimensional Fresnel interference effect with low high electric field intensity ranging from from 1 to 6 kV/m because of effective absorption of microwave power by the CHT. The lowest average electrical field intensity of 5 kV/m in the cavity space was given by the electrical conductivity of carbon ranging from 10 to 55 S/m. The CHT with 55 S/m heated to 1200oC by microwave irradiation at 200 W. This heating method was applied to activate 1.0x1015-cm-2 boron and phosphorus implanted regions in n-type crystalline silicon substrate to fabricate pn junction and solar cells. The CHT heating at 1200oC realized decrease in the sheet resistivity to 146 Ω/sq, decrease in the density of defect states to 1.3x1011 and 9.2x1010 cm-2 for boron (p+) and phosphorus (n+) implanted surfaces, and solar cell characteristic with a conversion efficiency of 15% under illumination of air mass 1.5 at 0.1 W/cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.