BackgroundPavlovian fear conditioning is a classical form of associative learning, which depends on associative synaptic plasticity in the amygdala. Recent findings suggest that the central amygdala (CeA) plays an active role in the acquisition of fear learning. However, little is known about the synaptic properties of the CeA in fear learning. The capsular part of the central amygdala (CeC) receives direct nociceptive information from the external part of the lateral parabrachial nucleus (lPB), as well as highly processed polymodal signals from the basolateral nucleus of the amygdala (BLA). Therefore, we focused on CeC as a convergence point for polymodal BLA signals and nociceptive lPB signals, and explored the synaptic regulation of these pathways in fear conditioning.ResultsIn this study, we show that fear conditioning results in synaptic potentiation in both lPB-CeC and BLA-CeC synapses. This potentiation is dependent on associative fear learning, rather than on nociceptive or sensory experience, or fear memory retrieval. The synaptic weight of the lPB-CeC and BLA-CeC pathways is correlated in fear-conditioned mice, suggesting that fear learning may induce activity-dependent heterosynaptic interactions between lPB-CeC and BLA-CeC pathways. This synaptic potentiation is associated with both postsynaptic and presynaptic changes in the lPB-CeC and BLA-CeC synapses.ConclusionsThese results indicate that the CeC may provide an important locus of Pavlovian association, integrating direct nociceptive signals with polymodal sensory signals. In addition to the well-established plasticity of the lateral amygdala, the multi-step nature of this association system contributes to the highly orchestrated tuning of fear learning.
Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the pairedpulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Keywords: active zone, associative learning, hippocampus, mouse, pre-synaptic, short-term plasticity. Address correspondence and reprint requests to Toshihisa Ohtsuka, Department of Biochemistry, Graduate School of Medicine/Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan. E-mail: tohtsuka@yamanashi.ac.jpAbbreviations used: ACSF, artificial cerebrospinal fluid; AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; CS, conditioned stimulus; D-APV, D-(-)-2-amino-5-phosphonovaleric acid; fEPSPs, field excitatory postsynaptic potentials; Ia-MN, Ia fiber to motor neuron; KO, knockout; LFS, low-frequency stimulation; LTP, long-term potentiation; mEPSCs, miniature excitatory postsynaptic currents; PPR, paired-pulse ratio; PTP, post-tetanic potentiation; RIM1, regulating synaptic membrane exocytosis protein 1; SAD, synapses of the amphids defective; US, unconditioned stimulus; WT, wild type. 36
BACKGROUND: Obesity and diabetes are well-established risk factors of Alzheimer’s disease (AD). In the brains of patients with AD and model mice, diabetes-related factors have been implicated in the pathological changes of AD. However, the molecular mechanistic link between the peripheral metabolic state and AD pathophysiology have remained elusive. Endoplasmic reticulum (ER) stress is known as one of the major contributors to the metabolic abnormalities in obesity and diabetes. Interventions aimed at reducing ER stress have been shown to improve the systemic metabolic abnormalities, although their effects on the AD pathology have not been extensively studied. OBJECTIVES: We examined whether interventions targeting ER stress attenuate the obesity/diabetes-induced Aβ accumulation in brains. We also aimed to determine whether ER stress that took place in the peripheral tissues or central nervous system was more important in the Aβ neuropathology. Furthermore, we explored if age-related metabolic abnormalities and Aβ accumulation could be suppressed by reducing ER stress. METHODS: APP transgenic mice (A7-Tg), which exhibit Aβ accumulation in the brain, were used as a model of AD to analyze parameters of peripheral metabolic state, ER stress, and Aβ pathology in the brain. Intraperitoneal or intracerebroventricular administration of taurodeoxycholic acid (TUDCA), a chemical chaperone, was performed in high-fat diet (HFD)-fed A7-Tg mice for ~1 month, followed by analyses at 9 months of age. Mice fed a normal diet were treated with TUDCA by drinking water for 4 months and intraperitoneally for 1 month in parallel, and analyzed at 15 months of age. RESULTS: Intraperitoneal administration of TUDCA suppressed ER stress in the peripheral tissues and ameliorated the HFD-induced obesity and insulin resistance. Concomitantly, Aβ levels in the brain were significantly reduced. In contrast, intracerebroventricular administration of TUDCA had no effect on the Aβ levels. Peripheral administration of TUDCA was also effective against the age-related obesity and insulin resistance, and markedly reduced amyloid accumulation. CONCLUSIONS: Interventions that target peripheral ER stress might be beneficial therapeutic and prevention strategies against brain Aβ pathology associated with metabolic overload and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.