Air-water experiments were performed for the BvVR steam dryer in order to elucidate droplet removal characteristics of the vane. Based on the results, a simplified vane was developed and its droplet removal characteristics were confirmed by air-water experiments using a whole dryer model.Phase-Doppler anemometer was used to measure droplet diameter distributions. In the experiments of the current vane with four-wave stages and 120° bend angle, almost all of the droplets were found to be trapped in the first and second vane stages. For the air velocity of 3.1 m/s, 90% of the inlet droplets were trapped there and 4% were trapped in the third and fourth stages, resulting in 6% being carried over. Sauter mean diameters at the exit were 6 and 5 µm while at the inlet they were 71 and 64 µ.m for the respective air velocities of 1and3111/s. Based on the \Veber number evaluation, the possible mechanism for the fine droplet generation was considered to be the breakup of droplets due to impingement on the liquid film formed in the vane surface.From the above results, the simplified vane with two-wave stages was developed. In order to remove fine droplets, the bend angle of the vane was reduced to 90°, in which a larger inertia force is exerted on finer droplets generated by breakup. Experiments for the whole dryer model showed that the developed vane could achieve the same droplet removal characteristics as the current vane without increasing the pressure drop of the dryer. A design having ten dryer bank rows and 1.2 m height, which is 0.8 m shorter than the current dryer, is possible for the dryer using the new simplified vane.
Air-water experiments were performed for the BvVR steam dryer in order to elucidate droplet removal characteristics of the vane. Based on the results, a simplified vane was developed and its droplet removal characteristics were confirmed by air-water experiments using a whole dryer model. Phase-Doppler anemometer was used to measure droplet diameter distributions. In the experiments of the current vane with four-wave stages and 120° bend angle, almost all of the droplets were found to be trapped in the first and second vane stages. For the air velocity of 3.1 m/s, 90% of the inlet droplets were trapped there and 4% were trapped in the third and fourth stages, resulting in 6% being carried over. Sauter mean diameters at the exit were 6 and 5 µm while at the inlet they were 71 and 64 µ.m for the respective air velocities of 1and3111/s. Based on the \Veber number evaluation, the possible mechanism for the fine droplet generation was considered to be the breakup of droplets due to impingement on the liquid film formed in the vane surface. From the above results, the simplified vane with two-wave stages was developed. In order to remove fine droplets, the bend angle of the vane was reduced to 90°, in which a larger inertia force is exerted on finer droplets generated by breakup. Experiments for the whole dryer model showed that the developed vane could achieve the same droplet removal characteristics as the current vane without increasing the pressure drop of the dryer. A design having ten dryer bank rows and 1.2 m height, which is 0.8 m shorter than the current dryer, is possible for the dryer using the new simplified vane.
Synchronized vibrations of a circular cylinder in a water cross flow at supercritical Reynolds numbers were measured. Turbulence intensities were varied to investigate the effect of the Strouhal number on the synchronization range. Self-excited vibration in the drag direction due to symmetrical vortex shedding began only when the Strouhal number was about 0.29, at a reduced velocity of 1.1. The reduced velocities at the beginning of lock-in vibrations caused by Karman vortex shedding decreased from 1.5 to 1.1 in the drag direction and from 2.7 to 2.2 in the lift direction, as the Strouhal number increased from 0.29 to 0.48.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.