When a mouse osteoblastic cell line MC3T3-E1 was cultured in the presence of tumor necrosis factor ␣ (TNF␣), the release of prostaglandin E 2 and the cyclooxygenase activity increased in a dose-and time-dependent manner. The increase of the enzyme activity was attributed mostly to the induction of cyclooxygenase-2 rather than cyclooxygenase-1 as judged by the inhibitory effect of NS398, Western blotting, and Northern blotting. In this system we attempted to elucidate the transcriptional regulation of the cyclooxygenase-2 gene. As examined by the luciferase assay, two positive regulatory regions (؊186 to ؊131 and ؊512 to ؊385 base pairs) were found in the 5-flanking promoter region of the mouse cyclooxygenase-2 gene in the TNF␣-stimulated cells. The former included putative NF-IL6 (C/ EBP) and AP2 elements, and the latter contained the NFB motif. A DNA probe including the NF-IL6 and AP2 sites gave positive bands upon electrophoretic mobility shift assay using the nuclear extracts of MC3T3-E1 cells. The bands were supershifted by the addition of anti-NF-IL6 antibody but not by anti-AP2 antibody. A probe including the NFB site also gave positive bands, which were supershifted by anti-NFB p50 and p65 antibodies. Furthermore, when the motif of NF-IL6 or NFB or both was subjected to point mutation, the luciferase activity was markedly reduced. These data suggested a potential role of both NF-IL6 and NFB in the induction of cyclooxygenase-2 by TNF␣.
In bone development and regeneration, angiogenesis and bone/cartilage resorption are essential processes and are closely associated with each other, suggesting a common mediator for these two biological events. To address this interrelationship, we examined the effect of vascular endothelial growth factor (VEGF), the most critical growth factor for angiogenesis, on osteoclastic bone-resorbing activity in a culture of highly purified rabbit mature osteoclasts. VEGF caused a dose-and time-dependent increase in the area of bone resorption pits excavated by the isolated osteoclasts, partially by enhancing the survival of the cells. Two distinct VEGF receptors, KDR/Flk-1 and Flt-1, were detectable in osteoclasts at the gene and protein levels, and VEGF induced tyrosine phosphorylation of proteins in osteoclasts. Thus, osteoclastic function and angiogenesis are upregulated by a common mediator such as VEGF.z 2000 Federation of European Biochemical Societies.
Prostaglandin endoperoxide H synthases-1 and -2 (PGHS-1 and -2) are the major targets of nonsteroidal anti-inflammatory drugs like aspirin and ibuprofen. These enzymes catalyze the committed step in the formation of prostanoids from arachidonic acid. Although PGHS-1 and -2 are similar biochemically, a number of studies suggest that PGHS-1 and PGHS-2 function independently to form prostanoids that subserve different cellular functions. We have hypothesized that these isozymes may reside, at least in part, in different subcellular compartments and that their compartmentation may affect their access to arachidonic acid and serve to separate the functions of the enzymes. To obtain high resolution data on the subcellular locations of PGHS-1 and -2, we employed immunoelectron microscopy with multiple antibodies specific to each isozyme. Both PGHS-1 and -2 were found on the lumenal surfaces of the endoplasmic reticulum (ER) and nuclear envelope of human monocytes, murine NIH 3T3 cells, and human umbilical vein endothelial cells. Within the nuclear envelope, PGHS-1 and -2 were present on both the inner and outer nuclear membranes and in similar proportions. Western blotting data showed a similar distribution of PGHS-1 and -2 in subcellular fractions, and product analysis using isozyme-specific inhibitors suggested that both enzymes generate the same products in NIH 3T3 cells. Thus, we are unable to attribute the independent functioning of PGHS-1 and PGHS-2 to differences in their subcellular locations. Instead, the independent operation of these isozymes may be attributable to subtle kinetic differences (e.g. negative allosteric regulation of PGHS-1 at low concentrations of arachidonate (500 -1000 nM)). A further conclusion of importance from a cell biological perspective is that membrane proteins such as PGHS-1 and -2, which are located on the lumenal surface of the ER, are able to diffuse freely among the ER and the inner and outer membranes of the nuclear envelope.
Cyclooxygenases (COX-1 and COX-2) are N-glycosylated, endoplasmic reticulum-resident, integral membrane proteins that catalyze the committed step in prostanoid synthesis. COX-1 is constitutively expressed in many types of cells, whereas COX-2 is usually expressed inducibly and transiently. The control of COX-2 protein expression occurs at several levels, and overexpression of COX-2 is associated with pathologies such as colon cancer. Here we have investigated COX-2 protein degradation and demonstrate that it can occur through two independent pathways. One pathway is initiated by post-translational N-glycosylation at Asn-594. The N-glycosyl group is then processed, and the protein is translocated to the cytoplasm, where it undergoes proteasomal degradation. We provide evidence from site-directed mutagenesis that a 27-amino acid instability motif (27-IM) regulates posttranslational N-glycosylation of Asn-594. This motif begins with Glu-586 8 residues upstream of the N-glycosylation site and ends with Lys-612 near the C terminus at Leu-618. Key elements of the 27-IM include a helix involving residues Glu-586 to Ser-596 with Asn-594 near the end of this helix and residues Leu-610 and Leu-611, which are located in an apparently unstructured downstream region of the 27-IM. The last 16 residues of the 27-IM, including Leu-610 and Leu-611, appear to promote N-glycosylation of Asn-594 perhaps by causing this residue to become exposed to appropriate glycosyl transferases. A second pathway for COX-2 protein degradation is initiated by substrate-dependent suicide inactivation. Suicide-inactivated protein is then degraded. The biochemical steps have not been resolved, but substrate-dependent degradation is not inhibited by proteasome inhibitors or inhibitors of lysosomal proteases. The pathway involving the 27-IM occurs at a constant rate, whereas degradation through the substrate-dependent process is coupled to the rate of substrate turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.