Enterohemorrhagic Escherichia coli (EHEC) causes hemorrhagic colitis, and in more severe cases, a serious clinical complication called hemolytic uremic syndrome (HUS). Shiga toxin (Stx)is one of the factors that cause HUS. Serotypes of Stx produced by EHEC include Stx1 and Stx2. Although some genetically mutated toxoids of Stx have been developed, large-scale preparation of Stx that is practical for vaccine development has not been reported. Therefore, overexpression methods for Stx2 and mutant Stx2 (mStx2) in E. coli were developed. The expression plasmid pBSK-Stx2(His) was constructed by inserting the full-length Stx2 gene, in which a six-histidine tag gene was fused at the end of the B subunit into the lacZa fragment gene of the pBluescript II SK(þ) vector. An E. coli MV1184 strain transformed with pBSK-Stx2(His) overexpressed histidine-tagged Stx2 (Stx2-His) in cells cultured in CAYE broth in the presence of lincomycin. Stx2-His was purified using TALON metal affinity resin followed by hydroxyapatite chromatography. From 1 L of culture, 68.8 mg of Stx2-His and 61.1 mg of mStx2-His, which was generated by site-directed mutagenesis, were obtained. Stx2-His had a cytotoxic effect on HeLa cells and was lethal to mice. However, the toxicity of mStx2-His was approximately 1000-fold lower than that of Stx2-His. Mice immunized with mStx2-His produced specific antibodies that neutralized the toxicity of Stx2 in HeLa cells. Moreover, these mice survived challenge with high doses of Stx2-His. Therefore, the lincomycin-inducible overexpression method is suitable for large-scale preparation of Stx2 vaccine antigens.
Shiga toxin 2 (Stx2)-specific mAb-producing hybridoma clones were generated from mice. Because mice tend to produce small amounts of B subunit (Stx2B)-specific antibodies at the polyclonal antibody level after immunization via the parenteral route, mice were immunized intranasally with Stx2 toxoids with a mutant heat-labile enterotoxin as a mucosal adjuvant; 11 different hybridoma clones were obtained in two trials. Six of them were A subunit (Stx2A)-specific whereas five were Stx2B-specific antibody-producing clones. The in vitro neutralization activity of Stx2B-specific mAbs against Stx2 was greater than that of Stx2A-specific mAbs on HeLa229 cells. Furthermore, even at low concentrations two of the Stx2B-specific mAbs (45 and 75D9) completely inhibited receptor binding and showed in vivo neutralization activity against a fivefold median lethal dose of Stx2 in mice. In western blot analysis, these Stx2B-specific neutralization antibodies did not react to three different mutant forms of Stx2, each amino acid residue of which was associated with receptor binding. Additionally, the nucleotide sequences of the V H and V L regions of clones 45 and 75D9 were determined. Our Stx2B-specific mAbs may be new candidates for the development of mouse-human chimeric Stx2-neutralizing antibodies which have fewer adverse effects than animal antibodies for enterohemorrhagic Escherichia coli infection.
Chicken egg yolk immunoglobulin (IgY) against Shiga toxin 2e (Stx2e), a major cause of swine edema disease, was prepared to evaluate its possible clinical applications. The titer of Stx2e-specific IgY in egg yolk derived from three chickens that had been immunized with an Stx2e toxoid increased 2 weeks after primary immunization and remained high until 90 days after this immunization. Anti-Stx2e IgY was found to neutralize the toxicity of Stx2e by reacting with its A and B subunits, indicating that IgY is a cost-effective agent to develop for prophylactic foods or diagnosis kits for edema disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.