BackgroundThe sodium-glucose co-transporter-2 (SGLT-2) inhibitors have been reported to increase both low-density lipoprotein (LDL) and high-density lipoprotein (HDL)-cholesterol (C). This study aimed to determine how SGLT-2 inhibitors affect LDL and HDL-C subspecies.MethodsThis single center, open-label, randomized, prospective study included 80 patients with type 2 diabetes taking prescribed oral hypoglycemic agents. Patients were allocated to receive dapagliflozin (n = 40) or sitagliptin (n = 40) as add-on treatment. Fasting blood samples were collected before and 12 weeks after this intervention. Small dense (sd) LDL-C, large buoyant (lb) LDL-C, HDL2-C, and HDL3-C levels were determined using our established homogeneous assays. Statistical comparison of blood parameters before and after treatment was performed using the paired t test.ResultsDapagliflozin and sitagliptin comparably decreased HbA1c (0.75 and 0.63%, respectively). Dapagliflozin significantly decreased body weight, systolic blood pressure, plasma triglycerides and liver transaminases, and increased adiponectin; sitagliptin did not alter these measurements. LDL-C and apolipoprotein (apo) B were not significantly changed by dapagliflozin, whereas HDL-C and apo AI were increased. Dapagliflozin did not alter concentrations of LDL-C, but sd LDL-C decreased by 20% and lb LDL-C increased by 18%. Marked elevation in lb LDL-C (53%) was observed in individuals (n = 20) whose LDL-C was elevated by dapagliflozin. However, sd LDL-C remained suppressed (20%). Dapagliflozin increased HDL2-C by 18% without affecting HDL3-C. Sitagliptin did not alter plasma lipids or lipoprotein subspecies.ConclusionsA SGLT-2 inhibitor, dapagliflozin suppresses potent atherogenic sd LDL-C and increased HDL2-C, a favorable cardiometabolic marker. Although LDL-C levels are elevated by treatment with dapagliflozin, this was due to increased concentrations of the less atherogenic lb LDL-C. However, these findings were not observed after treatment with dipeptidyl peptidase-4 inhibitor, sitagliptin.
Trial registration UMIN Clinical Trials Registry (UMIN000020984)Electronic supplementary materialThe online version of this article (doi:10.1186/s12933-016-0491-5) contains supplementary material, which is available to authorized users.
The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.