Objective. Stromal cell-derived factor 1 (SDF-1; CXCL12/pre-B cell growth-stimulating factor) is a dominant chemokine in bone marrow and is known to be involved in inflammatory diseases, including rheumatoid arthritis. However, its role in bone repair remains unknown. The purpose of this study was to investigate the role of SDF-1 and its receptor, CXCR4, in bone healing.Methods. The expression of SDF-1 during the repair of a murine structural femoral bone graft was examined by real-time polymerase chain reaction and immunohistochemical analysis. The bone graft model was treated with anti-SDF-1 neutralizing antibody or TF14016, an antagonist for CXCR4, and evaluated by histomorphometry. The functional effect of SDF-1 on primary mesenchymal stem cells was determined by in vitro and in vivo migration assays. New bone formation in an exchanging-graft model was compared with that in the autograft models, using mice partially lacking SDF-1 (SDF-1 ؉/؊ ) or CXCR4 (CXCR4 ؉/؊ ).Results. The expression of SDF1 messenger RNA was increased during the healing of live bone grafts but was not increased in dead grafts. High expression of SDF-1 protein was observed in the periosteum of the live graft. New bone formation was inhibited by the administration of anti-SDF-1 antibody or TF14016. SDF-1 increased mesenchymal stem cell chemotaxis in vitro in a dose-dependent manner. The in vivo migration study demonstrated that mesenchymal stem cells recruited by SDF-1 participate in endochondral bone repair. Bone formation was decreased in SDF-1 ؉/؊ and CXCR4 ؉/؊ mice and was restored by the graft bones from CXCR4 ؉/؊ mice transplanted into the SDF-1 ؉/؊ femur, but not vice versa.Conclusion. SDF-1 is induced in the periosteum of injured bone and promotes endochondral bone repair by recruiting mesenchymal stem cells to the site of injury.
Background Although the reactivation of hepatitis B virus (HBV) is recognised as a serious complication in patients with rheumatic disease (RD) receiving immunosuppressive drugs (ISDs), the incidence and risk factors for reactivation remain controversial. Objectives To investigate the incidence and risk factors for HBV reactivation in patients with RD. Methods We performed a multicentre, observational, prospective study over 2 years in patients with resolved HBV infection. Patients with RD treated with a dose of ≥5 mg/day prednisolone and/or synthetic or biological ISDs with negative HB virus surface antigen and positive anti-HB virus surface antibody (HBsAb) and/or anti-HB virus core antibody (HBcAb) were enrolled. Quantitative HBV DNA results and related data were regularly recorded. Results Among 1042 patients, including 959 with rheumatoid arthritis, HBV DNA was detected in 35 (1.93/100 person-years), with >2
ObjectiveThe purpose of this study was to investigate chemokine profiles and their functional roles in the early phase of fracture healing in mouse models.MethodsThe expression profiles of chemokines were examined during fracture healing in wild-type (WT) mice using a polymerase chain reaction array and histological staining. The functional effect of monocyte chemotactic protein-1 (MCP-1) on primary mouse bone marrow stromal cells (mBMSCs) was evaluated using an in vitro migration assay. MCP-1−/− and C-C chemokine receptor 2 (CCR2)−/− mice were fractured and evaluated by histological staining and micro-computed tomography (micro-CT). RS102895, an antagonist of CCR2, was continuously administered in WT mice before or after rib fracture and evaluated by histological staining and micro-CT. Bone graft exchange models were created in WT and MCP-1−/− mice and were evaluated by histological staining and micro-CT.Results MCP-1 and MCP-3 expression in the early phase of fracture healing were up-regulated, and high levels of MCP-1 and MCP-3 protein expression observed in the periosteum and endosteum in the same period. MCP-1, but not MCP-3, increased migration of mBMSCs in a dose-dependent manner. Fracture healing in MCP-1−/− and CCR2−/− mice was delayed compared with WT mice on day 21. Administration of RS102895 in the early, but not in the late phase, caused delayed fracture healing. Transplantation of WT-derived graft into host MCP-1−/− mice significantly increased new bone formation in the bone graft exchange models. Furthermore, marked induction of MCP-1 expression in the periosteum and endosteum was observed around the WT-derived graft in the host MCP-1−/− mouse. Conversely, transplantation of MCP-1−/− mouse-derived grafts into host WT mice markedly decreased new bone formation.ConclusionsMCP-1/CCR2 signaling in the periosteum and endosteum is essential for the recruitment of mesenchymal progenitor cells in the early phase of fracture healing.
The purpose of this study was to examine the effects of celecoxib on matrix metalloproteinases (MMP-1 and MMP-3), nitric oxide (NO), and the phosphorylation of nuclear factor-kappaB (NF-kappaB) and three mitogen-activated protein kinases (MAPKs), (p38, JNK and ERK) in human articular chondrocytes from normal, osteoarthritis, and rheumatoid arthritis cartilages. Celecoxib at 100 nM reduced the IL-1beta-induced productions of MMP-1, MMP-3, iNOS, and NO, whereas indomethacin at 100 nM showed no effect. The additional stimulation of prostaglandin E2 (PGE2) failed to restore those productions, while the production of PGE2 were reduced by 1 and 10 microM but not 100 nM of celecoxib. The inhibitors of NF-kappaB, JNK and p38, but not ERK, decreased IL-1beta-enhanced MMP-1, MMP-3 and NO production, respectively, and 100 nM celecoxib down-regulated the phosphorylation of NF-kappaB and JNK but has no effect on either p38 or ERK. Celecoxib has inhibitory effects on MMP-1, MMP-3 and NO productions, suggesting the protective roles directly on articular chondrocytes. Despite the COX-2 selectivity, celecoxib affects those productions via not PGE2 but NF-kappaB and JNK MAPK.
Although a notable amount of CCL20 is detectable in the synovial fluid of human rheumatoid arthritis (RA), its role in the pathogenesis of RA remains to be determined. IL-1beta vigorously induced the production of CCL20 from FLSs of human RA and the production of CCL20 induced by TNF-alpha was partially attributed to a trace amount of IL-1beta induced by TNF-alpha. Although IL-6 failed to induce CCL20, TNF-alpha-induced IL-6 enhanced the production of CCL20 in an autocrine/paracrine manner. To determine the role of CCL20 and its sole receptor CCR6 in the recruitment of mononuclear cells (MNCs) into the inflamed joint of RA, conditioned medium of IL-1beta-stimulated FLSs was used in migration assays. The conditioned medium significantly recruited CCR6(+) MNCs in a CCL20-dependent manner. The production of CCL20 induced by TNF-alpha and IL-1beta was modified by helper-T-cell-derived cytokines. Interestingly, CCL20 enhanced the production of IL-6 coordinately with the stimulation of IL-17 but not with that of IFN-gamma. These findings imply FLSs stimulated by proinflammatory cytokines recruit CCR6(+) MNCs including IL-17-producing-helper T cells into the inflamed joint, leading to the enhancement of the production of CCL20, which chemokine and IL-17 coordinately induce proinflammatory cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.