We investigated the expression, activation, and distribution of c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinases (p38s) and extracellular signal-regulated kinases (ERKs) using Western blotting and immunohistochemistry in gerbil hippocampus after transient forebrain ischemia to clarify the role of these kinases in delayed neuronal death (DND) in the CA1 subfield. Immunoblot analysis demonstrated that activities of JNK, p38, and ERK in whole hippocampus were increased after 5 min of global ischemia. We used an immunohistochemical study to elucidate the temporal and spatial expression of these kinases after transient global ischemia. The immunohistochemical study showed that active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and then gradually reduced and disappeared in the hippocampal CA1 region. On the other hand, in CA3 neurons, active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and peaked at 6 hr of reperfusion and then gradually reduced but was continuously detected 72 hr after ischemia. Active ERK immunoreactivity was observed transiently in CA3 fibers and dentate gyrus. Pretreatment with SB203580, a p38 inhibitor, but not with PD98059, an ERK kinase 1/2 inhibitor, reduced ischemic cell death in the CA1 region after transient global ischemia by inhibiting the activity of p38. These findings indicate that the p38 pathway may play an important role in DND during brain ischemia in gerbil. Components of the pathway are important target molecules for clarifying the mechanism of neuronal death.
Thioredoxin (TRX) is induced by a variety of oxidative stimuli and shows cytoprotective roles against oxidative stress. To clarify the possibility of clinical application, we examined the effects of intravenously administered TRX in a model of transient focal cerebral ischemia in this study. Mature male C57BL/6j mice received either continuous intravenous infusion of recombinant human TRX (rhTRX) over a range of 1-10 mg/kg, bovine serum albumin, or vehicle alone for 2 h after 90-min transient middle cerebral artery occlusion (MCAO). Twenty-four hours after the transient MCAO, the animals were evaluated neurologically and the infarct volumes were assessed. Infarct volume, neurological deficit, and protein carbonyl contents, a marker of protein oxidation, in the brain were significantly ameliorated in rhTRX-treated mice at the dose of 3 and 10 mg/kg versus these parameters in control animals. Moreover, activation of p38 mitogen-activated protein kinase, whose pathway is involved in ischemic neuronal death, was suppressed in the rhTRX-treated mice. Further, rhTRX was detected in the ischemic hemisphere by western blot analysis, suggesting that rhTRX was able to permeate the blood-brain barrier in the ischemic hemisphere. These data indicate that exogenous TRX exerts distinct cytoprotective effects on cerebral ischemia/reperfusion injury in mice by means of its redox-regulating activity.
Nitric oxide from neuronal cells plays detrimental roles in glutamate neurotoxicity and in focal brain ischemia. Nitric oxide directly damages DNA, and breaks in the DNA strands activate poly(ADP-ribose) polymerase (PARP), which brings poly(ADP-ribosyl)ation of the nuclear proteins. The excessive activation of PARP is thought to cause depletion of ATP and the energy failure resulting in cell death. To clarify the involvement of poly(ADP-ribosyl)ation in ischemic insult, we examined poly(ADP ribosyl)ation by immunohistochemical methods and the protective effect of 3-aminobenzamide, which is a PARP inhibitor, on focal brain ischemia using an intraluminal permanent middle cerebral artery occlusion model in rats. Poly(ADP ribosyl)ation was widely and markedly detected 2 hours after the ischemic insult in the cerebral cortex and striatum in which infarction developed 24 hours later. The enhanced immunoreactivity of poly(ADP-ribose) gradually decreased, and 16 hours later, no immunoreactivity was detected. Intraventricular administration of 3-aminobenzamide (1 to 30 mg/kg) 30 minutes before the ischemic insult decreased infarction volume in a dose-dependent manner along with the immunohistochemical reduction of poly(ADP-ribosyl)ation. Pretreatment with 7-nitroindazole (25 mg/kg, intraperitoneally), a selective neuronal nitric oxide synthetase inhibitor, partially reduced poly(ADP-ribosyl)ation. These data suggest the involvement of poly(ADP-ribosyl)ation in the development of cerebral infarction.
The effects of sodium butyrate (SB) and trichostatin A (TSA) on cell proliferation andapoptosis against human glioma T98G, U251MG, and U877MG cells were investigated. Upon exposure to either SB or TSA, cell proliferation was reduced, and apoptosis detected by DNA fragmentation analysis and the cleavage of CPP32 was induced. Previously, we reported that SB increased the expression levels of p21 (WAF-1) and inhibited G1-S transition of the cell cycle. In this study, we showed that TSA also increased p21 expression, suggesting that histone deacetylase (HDAC) inhibitors may up-regulate p21 protein in common and thus arrest proliferation in the G1 phase of the cell cycle. To further determine the underlying molecular mechanisms of apoptosis with either SB or TSA treatment, we studied the expression levels of apoptosis-related proteins in human glioma cells. SB increased the expression of the Bad protein, although the expression of Bcl-2, Bcl-xL, Bax, and Fas was not changed by theaddition of SB. TSA treatment also up-regulated the expression of Bad protein. The results suggest that HDAC inhibitors such as SB and TSA induce apoptosis through an increase in Bad protein in human glioma cells in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.