Polydatin or 3-O-β-d-resveratrol-glucopyranoside (PD), a stilbenoid component of Polygonum cuspicadum (Polygonaceae), has a variety of biological roles. In traditional Chinese medicine, P. cuspicadum extracts are used for the treatment of infections, inflammation, and cardiovascular disorders. Polydatin possesses a broad range of biological activities including antioxidant, anti-inflammatory, anticancer, and hepatoprotective, neuroprotective, and immunostimulatory effects. Currently, a major proportion of the population is victimized with cervical lung cancer, ovarian cancer and breast cancer. PD has been recognized as a potent anticancer agent. PD could effectively inhibit the migration and proliferation of ovarian cancer cells, as well as the expression of the PI3K protein. The malignancy of lung cancer cells was reduced after PD treatments via targeting caspase 3, arresting cancer cells at the S phase and inhibiting NLRP3 inflammasome by downregulation of the NF-κB pathway. This ceases cell cycle, inhibits VEGF, and counteracts ROS in breast cancer. It also prevents cervical cancer by regulating epithelial-to-mesenchymal transition (EMT), apoptosis, and the C-Myc gene. The objective of this review is thus to unveil the polydatin anticancer potential for the treatment of various tumors, as well as to examine the mechanisms of action of this compound.
Gentamicin is considered one of the most typical causes of testicular damage. Oxidative stress is a significant contributor to testicular tissue damage. Zamzam water (alkaline in nature) has an antioxidant effect. The purpose of this study was to assess the potential palliative effect of Zamzam water against gentamicin-induced testicular damage. Thirty Rats were separated into three groups, each with ten rats, as follows: The Control received only normal saline. The gentamicin group received 100 mg/kg/day of gentamicin intraperitoneally for six days from day 15 to the end of the experiment. The gentamicin +Zamzam Water group received a dose of gentamicin 100 mg/kg/day intraperitoneally with Zamzam water as their sole source of drinking from day one to day 21. Hormonal assay in serum, histological, immunohistochemical, and ultrastructural examination of testicular tissue with a molecular study were obtained. Pretreatment with Zamzam water significantly p < 0.001 increased serum levels of testosterone, FSH, and LH, as well as the percentage of sperm motility and progressive motility. It also upregulated SOD, CAT, GPx enzymatic activity, gene expression of Nrf2/HO-1, and immunoexpression of PCNA. While the percentage of dead sperm and abnormal sperm, immunoexpression of NFκB, Caspase 3, inflammatory cytokines TNFα, IL-1β, IL-6, and MDA levels significantly( p < 0.001) declined with histological improvement. It was concluded that Zamzam water as alkaline water possesses antioxidant, anti-inflammatory, and antiapoptotic effects against gentamicin-induced testicular toxicity in vivo.
Background: Nicotine is the active alkaloid in cigarettes. It was reported that tobacco smoking has many hazards; one of these hazards is the effect on the cognitive function of the prefrontal cortex. The aim of our study is to investigate the antioxidant effects of ginger, cinnamon oils, and their combination on morphological changes in the prefrontal cortex that were induced by nicotine. Materials and methods: Fifty adult male albino rats were divided into five groups: group I (control group), group II (nicotine), group III (nicotine + cinnamon), group IV (nicotine + ginger), and group V (nicotine + cinnamon + ginger). The coronal sections from the anterior part of the rat brain at the site of prefrontal cortex were examined by light microscope for (H&E and immunohistochemical staining with TNF-α and GFAP), while the ultrastructure morphology was examined by transmission electron microscopy. Levels of the oxidative stress markers (MDA, GSH) in the rats’ brain tissue homogenate were biochemically assessed. Results: Compared to the control group, the rats that were treated with nicotine (group II) showed a significant oxidative stress in the form of marked elevation of MDA and decrease in GSH, apoptotic changes especially in the pyramidal cells in the form of neuronal cell degeneration and pyknosis, and an elevation in the inflammatory marker TNF-α and GFAP expressions. These changes were observed to a lesser degree in rat group (III) and group (IV), while there was a marked improvement achieved by the combined usage of cinnamon and ginger oils, together compared to the nicotine group. Conclusions: Ginger and cinnamon are powerful antioxidants which ameliorate the degenerative and oxidative effects produced by nicotine on a rat’s prefrontal cortex.
Cyclosporine (CsA) is considered one of the main components of treatment protocols for organ transplantation owing to its immunosuppressive effect. However, its use is very restricted due to its nephrotoxic effect. ZW is an alkaline fluid rich in various trace elements and has a great ability to stimulate antioxidant processes. This study aimed to investigate the possible mitigating effect of ZW on CsA-induced nephrotoxicity and its underlying mechanisms. Forty rats were allocated into four groups (n = 10): a control group, ZW group, cyclosporine A group (injected subcutaneously (SC) with CsA (20 mg/kg/day)), and cyclosporine A+ Zamzam water group (administered CsA (SC) and ZW as their only drinking water (100 mL/cage/day) for 21 days). Exposure to CsA significantly (p < 0.001) increased the serum creatinine level, lipid peroxidation marker level (malondialdehyde; MDA), and the expression of apoptotic markers procaspase-8, caspase-8, caspase- 9, calpain, cytochrome c, caspas-3, P62, and mTOR in renal tissues. Meanwhile, it markedly decreased (p< 0.001) the autophagic markers (AMPK, ULK-I, ATag5, LC3, and Beclin-1), antiapoptotic Bcl-2, and antioxidant enzymes. Moreover, the administration of CsA caused histological alterations in renal tissues. ZW significantly (p < 0.001) reversed all the changes caused by CsA and conclusively achieved a positive outcome in restraining CsA-induced nephrotoxicity, as indicated by the restoration of the histological architecture, improvement of renal function, inhibition of apoptosis, and enhancement of autophagy via the AMPK/mTOR pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.