The emergence of the SARS‐CoV‐2 pandemic and airborne particulate matter (PM) pollution has led to remarkably high demand for face masks. However, conventional respirators are intended for single use and made from nondegradable materials, causing serious concern for a plastic‐waste environmental crisis. Furthermore, these facemasks are weakened in humid conditions and difficult to decontaminate. Herein, a reusable, self‐sustaining, highly effective, and humidity‐resistant air filtration membrane with excellent particle‐removal efficiency is reported, based on highly controllable and stable piezoelectric electrospun poly (l‐lactic acid) (PLLA) nanofibers. The PLLA filter possesses a high filtration efficiency (>99% for PM 2.5 and >91% for PM 1.0) while providing a favorable pressure drop (≈91 Pa at normal breathing rate) for human breathing due to the piezoelectric charge naturally activated by respiration through the mask. The filter has a long, stable filtration performance and good humidity resistance, demonstrated by a minimal declination in the filtration performance of the nanofiber membrane after moisture exposure. The PLLA filter is reusable via common sterilization tools (i.e., an ultrasonic cleaning bath, autoclave, or microwave). Moreover, a prototype of a completely biodegradable PLLA nanofiber‐based facemask is fabricated and shown to decompose within 5 weeks in an accelerated degradation environment.
Gene therapy is a critical constituent of treatment approaches for genetic diseases and has gained tremendous attention. Treating and preventing diseases at the genetic level using genetic materials such as DNA or RNAs could be a new avenue in medicine. However, delivering genes is always a challenge as these molecules are sensitive to various enzymes inside the body, often produce systemic toxicity, and suffer from off-targeting problems. In this regard, transdermal delivery has emerged as an appealing approach to enable a high efficiency and low toxicity of genetic medicines. This review systematically summarizes outstanding transdermal gene delivery methods for applications in skin cancer treatment, vaccination, wound healing, and other therapies.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.