Maintenance of circadian alignment between an organism and its environment is essential to ensure metabolic homeostasis. Synchrony is achieved by cell autonomous circadian clocks. Despite a growing appreciation of the integral relation between clocks and metabolism, little is known regarding the direct influence of a peripheral clock on cellular responses to fatty acids. To address this important issue, we utilized a genetic model of disrupted clock function specifically in cardiomyocytes in vivo (termed cardiomyocyte clock mutant (CCM)). CCM mice exhibited altered myocardial response to chronic high fat feeding at the levels of the transcriptome and lipidome as well as metabolic fluxes, providing evidence that the cardiomyocyte clock regulates myocardial triglyceride metabolism. Time-of-day-dependent oscillations in myocardial triglyceride levels, net triglyceride synthesis, and lipolysis were markedly attenuated in CCM hearts. Analysis of key proteins influencing triglyceride turnover suggest that the cardiomyocyte clock inactivates hormone-sensitive lipase during the active/awake phase both at transcriptional and post-translational (via AMP-activated protein kinase) levels. Consistent with increased net triglyceride synthesis during the end of the active/awake phase, high fat feeding at this time resulted in marked cardiac steatosis. These data provide evidence for direct regulation of triglyceride turnover by a peripheral clock and reveal a potential mechanistic explanation for accelerated metabolic pathologies after prevalent circadian misalignment in Western society.Striking time-of-day-dependent oscillations are observed in multiple cardiometabolic parameters in both animal models and humans. These parameters range from levels of circulating nutrients and endocrine factors, neural activity, glucose tolerance, insulin sensitivity, feeding behavior, and energy metabolism (both at the individual tissue and whole body levels) to cardiovascular function (1-5). Significant alterations in many of these oscillations are observed in metabolic disease states (e.g. obesity, diabetes mellitus, and cardiovascular disease), suggesting that circadian misalignment may play an important role in the etiology of multiple pathologies (5, 6). Recent molecular/ genetic-based studies reinforce such a concept and suggest that intrinsic cellular circadian clocks play a pivotal role in mediating many, if not all, biological rhythms. Circadian clocks are transcriptionally based molecular mechanisms that generate self-sustained positive and negative feedback loops with a free running period of ϳ24 h (7); this molecular mechanism has been identified within essentially all mammalian cells (both central and peripheral). Circadian clocks confer the selective advantage of anticipation. In doing so molecular clocks enable the cell to prepare for an external stimulus before its onset, thereby maintaining optimal synchrony with the environment. Given marked time-of-day-dependent rhythms in energy supply (e.g. dietary nutrient intake) and de...
The rat infarct model is widely used in heart failure research, but few echocardiographic indexes of left ventricular (LV) function are validated in this model. Accordingly, the objective of this study was to validate a 13-segment LV wall motion score index (WMSI) and the myocardial performance index (MPI) in infarcted rats. Twenty-nine male Wistar rats underwent left coronary artery ligation or sham operation and were evaluated with two-dimensional and Doppler flow echocardiography 8 wk later. After echocardiography, invasive indexes were obtained using a high-fidelity catheter. WMSI and MPI were correlated with the invasive and noninvasive measurements of LV function. WMSI and MPI significantly correlated directly with end-diastolic pressure (r=0.72 and 0.42 for WMSI and MPI, respectively) and the time constant of isovolumic relaxation (r=0.68 and 0.48) and inversely with peak rate of rise of LV pressure (+dP/dt; r=-0.68 and -0.50), peak rate of decline in LV pressure (r=-0.57 and -0.44), LV developed pressure (r=-0.58 and -0.42), area fractional shortening (r=-0.85 and -0.53), and cardiac index (r=-0.74 and -0.74). Stepwise linear regression analyses revealed that LV end-diastolic pressure, +dP/dt, area fractional shortening, and cardiac index were independent determinants of WMSI (r=0.994) and that cardiac index and +dP/dt were independent determinants of MPI (r=0.781). We conclude that the 13-segment WMSI and MPI are reproducible and correlate strongly with established echocardiographic and invasive indexes of systolic and diastolic function. These findings support the use of WMSI and MPI as indexes of global LV function in the rat infarction model of heart failure.
Cells/organs must respond both rapidly and appropriately to increased fatty acid availability; failure to do so is associated with the development of skeletal muscle and hepatic insulin resistance, pancreatic -cell dysfunction, and myocardial contractile dysfunction. Here we tested the hypothesis that the intrinsic circadian clock within the cardiomyocytes of the heart allows rapid and appropriate adaptation of this organ to fatty acids by investigating the following: 1) whether circadian rhythms in fatty acid responsiveness persist in isolated adult rat cardiomyocytes, and 2) whether manipulation of the circadian clock within the heart, either through light/dark (L/D) cycle or genetic disruptions, impairs responsiveness of the heart to fasting in vivo. We report that both the intramyocellular circadian clock and diurnal variations in fatty acid responsiveness observed in the intact rat heart in vivo persist in adult rat cardiomyocytes. Reversal of the 12-h/12-h L/D cycle was associated with a re-entrainment of the circadian clock within the rat heart, which required 5-8 days for completion. Fasting rats resulted in the induction of fatty acid-responsive genes, an effect that was dramatically attenuated 2 days after L/D cycle reversal. Similarly, a targeted disruption of the circadian clock within the heart, through overexpression of a dominant negative CLOCK mutant, severely attenuated induction of myocardial fatty acid-responsive genes during fasting. These studies expose a causal relationship between the circadian clock within the cardiomyocyte with responsiveness of the heart to fatty acids and myocardial triglyceride metabolism.
Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipid intermediate ceramide. This study assessed cardiac function, expression of PPAR-regulated genes, and cardiomyocyte apoptosis in rats after 8 wk on either a low-fat diet [normal chow control (NC); 10% fat calories] or high-fat diets composed mainly of either saturated (Sat) or unsaturated fatty acids (Unsat) (60% fat calories) (n = 10/group). The Sat group had lower plasma insulin and leptin concentrations compared with the NC or Unsat groups. Cardiac function and mass and body mass were not different. Cardiac triglyceride content was increased in the Sat and Unsat groups compared with NC (P < 0.05); however, ceramide content was higher in the Sat group compared with the Unsat group (2.9 +/- 0.2 vs. 1.4 +/- 0.2 nmol/g; P < 0.05), whereas the NC group was intermediate (2.3 +/- 0.3 nmol/g). The number of apoptotic myocytes, assessed by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining, was higher in the Sat group compared with the Unsat group (0.28 +/- 0.05 vs. 0.17 +/- 0.04 apoptotic cells/1,000 nuclei; P < 0.04) and was positively correlated to ceramide content (P < 0.02). Both high-fat diets increased the myocardial mRNA expression of the PPAR-regulated genes encoding uncoupling protein-3 and pyruvate dehydrogenase kinase-4, but only the Sat diet upregulated medium-chain acyl-CoA dehydrogenase. In conclusion, dietary fatty acid composition affects cardiac ceramide accumulation, cardiomyocyte apoptosis, and expression of PPAR-regulated genes independent of cardiac mass or function.
Abstract-The effects of dietary fat intake on the development of left ventricular hypertrophy and accompanying structural and molecular remodeling in response to hypertension are not understood. The present study compared the effects of a high-fat versus a low-fat diet on development of left ventricular hypertrophy, remodeling, contractile dysfunction, and induction of molecular markers of hypertrophy (ie, expression of mRNA for atrial natriuretic factor and myosin heavy chain ). Dahl salt-sensitive rats were fed either a low-fat (10% of total energy from fat) or a high-fat (60% of total energy from fat) diet on either low-salt or high-salt (6% NaCl) chow for 12 weeks. Hearts were analyzed for mRNA markers of ventricular remodeling and activities of the mitochondrial enzymes citrate synthase and medium chain acyl-coenzyme A dehydrogenase. Similar levels of hypertension were achieved with high-salt feeding in both diet groups (systolic pressure of Ϸ190 mm Hg). In hypertensive rats fed low-fat chow, left ventricular mass, myocyte cross-sectional area, and end-diastolic volume were increased, and ejection fraction was decreased; however, these effects were not observed with the high-fat diet. Hypertensive animals on low-fat chow had increased atrial natriuretic factor mRNA, myosin heavy chain isoform switching (␣ to ), and decreased activity of citrate synthase and medium chain acyl-coenzyme A dehydrogenase, which were all attenuated by high-fat feeding. Key Words: cardiac Ⅲ heart Ⅲ fatty acid Ⅲ lipid Ⅲ mitochondria H ypertension is a leading cause of cardiac mortality and morbidity and frequently leads to pathological left ventricular (LV) hypertrophy (LVH), contractile dysfunction, and heart failure. 1 Current dietary guidelines recommend a low-fat/high-carbohydrate diet for patients with hypertension. 2,3 However, little is known about the effects of dietary fat intake on the development of LVH in response to hypertension and the accompanying structural and molecular remodeling observed with chronic blood pressure elevation. The development of LVH in response to short-term hypertension is affected by the fat and carbohydrate composition of the diet, because hypertensive rats fed a high-fat diet had reduced LVH and improved LV systolic function compared with rats fed a high-carbohydrate diet despite a similar systolic blood pressure. 4 It is not clear whether this effect is beneficial in the long term, because the lack of compensatory hypertrophy in response to greater wall stress could accelerate LV remodeling and progression to heart failure. 4,5 The expression of genes involved in fluid regulation, cardiac contractile function, and energy metabolism are altered in response to both pressure overload and dietary fat intake. The normal heart primarily relies on the oxidation of fatty acids in the mitochondria to provide the energy for contractile power generation. However, with advanced LVH there is a downregulation of key enzymes in the fatty acid oxidation pathway and an increase in the relative contribution ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.