CpG-C are a novel class of CpG motif-containing immunostimulatory sequences (ISS) that includes both a 5'-TCG element and a CpG-containing palindrome. CpG-C drive all known ISS activities and, in particular, are potent enhancers of IFN-alpha from plasmacytoid dendritic cells (PDCs). In our examination of CpG-C sequence requirements, we determined that optimal IFN-alpha-inducing activity could be achieved with longer palindromes. Longer palindromes also correlated with maintenance of the double-stranded (ds) form despite concentration and pH changes, indicating a preference for ds oligodeoxynucleotides (ODNs) by the ISS-induced signaling mechanism for IFN-alpha synthesis. This correlation did not hold for all arms of the ISS-induced immune response, since we did not observe increased B cell activity with the longer palindrome CpG-C ODNs. We further demonstrated that CpG-C retained activity in an in vitro primate system and induced the expression of several cytokines and IFN-alpha-inducible genes when CpG-C were administered in vivo to mice and primates. In conclusion, we have shown CpG-C to exert several types of immune functions across multiple species, and this novel class is thus an attractive candidate for ISS-based therapeutic strategies.
Poxvirus-based active immunotherapies mediate anti-tumor efficacy by triggering broad and durable Th1 dominated T cell responses against the tumor. While monotherapy significantly delays tumor growth, it often does not lead to complete tumor regression. It was hypothesized that the induced robust infiltration of IFNγ-producing T cells into the tumor could provoke an adaptive immune evasive response by the tumor through the upregulation of PD-L1 expression. In therapeutic CT26-HER-2 tumor models, MVA-BN-HER2 poxvirus immunotherapy resulted in significant tumor growth delay accompanied by a robust, tumor-infiltrating T cell response that was characterized by low to mid-levels of PD-1 expression on T cells. As hypothesized, this response was countered by significantly increased PD-L1 expression on the tumor and, unexpectedly, also on infiltrating T cells. Synergistic benefit of anti-tumor therapy was observed when MVA-BN-HER2 immunotherapy was combined with PD-1 immune checkpoint blockade. Interestingly, PD-1 blockade stimulated a second immune checkpoint molecule, LAG-3, to be expressed on T cells. Combining MVA-BN-HER2 immunotherapy with dual PD-1 plus LAG-3 blockade resulted in comprehensive tumor regression in all mice treated with the triple combination therapy. Subsequent rejection of tumors lacking the HER-2 antigen by treatment-responsive mice without further therapy six months after the original challenge demonstrated long lasting memory and suggested that effective T cell immunity to novel, non-targeted tumor antigens (antigen spread) had occurred. These data support the clinical investigation of this triple therapy regimen, especially in cancer patients harboring PD-L1neg/low tumors unlikely to benefit from immune checkpoint blockade alone.
The dramatic clinical benefit of immune checkpoint blockade for a fraction of cancer patients suggests the potential for further clinical benefit in a broader cancer patient population by combining immune checkpoint inhibitors with active immunotherapies. The anti-tumor efficacy of MVA-BN-HER2 poxvirus-based active immunotherapy alone or in combination with CTLA-4 checkpoint blockade was investigated in a therapeutic CT26-HER-2 lung metastasis mouse model. MVA-BN-HER2 immunotherapy significantly improved the median overall survival compared to untreated controls or CTLA-4 blockade alone (p < 0.001). Robust synergistic efficacy was achieved with the combination therapy (p < 0.01). Improved survival following MVA-BN-HER2 administration was accompanied by increased tumor infiltration by HER-2-specific cytotoxic T lymphocytes (CTL). These tumor-specific CTL had characteristics similar to antiviral CTL, including strong expression of activation markers and co-expression of IFNγ and TNFα. Combination with CTLA-4 blockade significantly increased the magnitude of HER-2-specific T cell responses, with a higher proportion co-expressing TNFα and/or IL-2 with IFNγ. Furthermore, in mice treated with MVA-BN-HER2 (alone or in combination with CTLA-4 blockade), the inducible T cell co-stimulator (ICOS) protein was expressed predominantly on CD4 and CD8 effector T cells but not on regulatory T cells (Treg). In contrast, mice left untreated or treated solely with CTLA-4 blockade harbored elevated ICOS+ Treg, a phenotype associated with highly suppressive activity. In conclusion, poxvirus-based active immunotherapy induced robust tumor infiltration by highly efficient effector T cells. Combination with CTLA-4 immune checkpoint blockade amplified this response resulting in synergistically improved efficacy. These hypothesis-generating data may help elucidate evidence of enhanced clinical benefit from combining CTLA-4 blockade with poxvirus-based active immunotherapy.Electronic supplementary materialThe online version of this article (doi:10.1007/s00262-016-1816-7) contains supplementary material, which is available to authorized users.
The extracellular ATP/adenosine axis in the tumor microenvironment (TME) has emerged as an important immune-regulatory pathway. Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), otherwise known as CD39, is highly expressed in the TME, both on infiltrating immune cells and tumor cells across a broad set of cancer indications. CD39 processes pro-inflammatory extracellular ATP to ADP and AMP, which is then processed by Ecto-5ʹ-nucleotidase/CD73 to immunosuppressive adenosine. Directly inhibiting the enzymatic function of CD39 via an antibody has the potential to unleash an immune-mediated anti-tumor response via two mechanisms: 1) increasing the availability of immunostimulatory extracellular ATP released by damaged and/or dying cells, and 2) reducing the generation and accumulation of suppressive adenosine within the TME. Tizona Therapeutics has engineered a novel first-in-class fully human anti-CD39 antibody, TTX-030, that directly inhibits CD39 ATPase enzymatic function with sub-nanomolar potency. Further characterization of the mechanism of inhibition by TTX-030 using CD39 + human melanoma cell line SK-MEL-28 revealed an uncompetitive allosteric mechanism (α < 1). The uncompetitive mechanism of action enables TTX-030 to inhibit CD39 at the elevated ATP concentrations reported in the TME. Maximal inhibition of cellular CD39 ATPase velocity was 85%, which compares favorably to results reported for antibody inhibitors to other enzyme targets. The allosteric mechanism of TTX-030 was confirmed via mapping the epitope to a region of CD39 distant from its active site, which suggests possible models for how potent inhibition is achieved. In summary, TTX-030 is a potent allosteric inhibitor of CD39 ATPase activity that is currently being evaluated in clinical trials for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.