Abstract& The Open Access Series of Imaging Studies is a series of magnetic resonance imaging data sets that is publicly available for study and analysis. The initial data set consists of a cross-sectional collection of 416 subjects aged 18 to 96 years. One hundred of the included subjects older than 60 years have been clinically diagnosed with very mild to moderate Alzheimer's disease. The subjects are all right-handed and include both men and women. For each subject, three or four individual T1-weighted magnetic resonance imaging scans obtained in single imaging sessions are included. Multiple within-session acquisitions provide extremely high contrast-to-noise ratio, making the data amenable to a wide range of analytic approaches including automated computational analysis. Additionally, a reliability data set is included containing 20 subjects without dementia imaged on a subsequent visit within 90 days of their initial session. Automated calculation of whole-brain volume and estimated total intracranial volume are presented to demonstrate use of the data for measuring differences associated with normal aging and Alzheimer's disease. &
This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation.
Functional magnetic resonance imaging (fMRI) was used to investigate whether age-related differences in episodic memory performance are accompanied by a reduction in the specificity of recollected information. We addressed this question by comparing recollection-related cortical reinstatement in young and older adults. At study, subjects viewed objects and concrete words, making 1 of 2 different semantic judgments depending on the study material. Test items were words that corresponded to studied words or the names of studied objects. Subjects indicated whether each test item was recollected, familiar, or novel. Reinstatement of information differentiating the encoding tasks was quantified both with a univariate analysis of the fMRI signal and with a multivoxel pattern analysis, using a classifier that had been trained to discriminate between the 2 classes of study episode. The results of these analyses converged to suggest that reinstatement did not differ according to age. Thus, there was no evidence that specificity of recollected information was reduced in older individuals. Additionally, there were no age effects in the magnitude of recollection-related modulations in regional activity or in the neural correlates of post-retrieval monitoring. Taken together, the findings suggest that the neural mechanisms engaged during successful episodic retrieval can remain stable with advancing age.
The relationships between age, retrieval-related neural activity, and episodic memory performance were investigated in samples of young (18–29 yrs), middle-aged (43–55 yrs) and older (63–76 yrs) healthy adults. Participants underwent fMRI scanning during an associative recognition test that followed a study task performed on visually presented word pairs. Test items comprised pairs of intact (studied pairs), rearranged (items studied on different trials) and new words. fMRI recollection effects were operationalized as greater activity for studied pairs correctly endorsed as intact than for pairs incorrectly endorsed as rearranged. The reverse contrast was employed to identify retrieval monitoring effects. Robust recollection effects were identified in the core recollection network, comprising the hippocampus, along with parahippocampal and posterior cingulate cortex, left angular gyrus and medial prefrontal cortex. Retrieval monitoring effects were identified in the anterior cingulate and right dorsolateral prefrontal cortex. Neither recollection effects within the core network, nor the monitoring effects differed significantly across the age groups after controlling for individual differences in associative recognition performance. Whole brain analyses did however identify three clusters outside of these regions where recollection effects were greater in the young than in the other age groups. Across-participant regression analyses indicated that the magnitude of hippocampal and medial prefrontal cortex recollection effects, and both of the prefrontal monitoring effects, correlated significantly with memory performance. None of these correlations were moderated by age. The findings suggest that the relationships between memory performance and functional activity in regions consistently implicated in successful recollection and retrieval monitoring are stable across much of the healthy adult lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.